Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python | |
| import torch | |
| import numpy as np | |
| import gradio as gr | |
| from faiss import read_index | |
| from PIL import Image, ImageOps | |
| from datasets import load_dataset | |
| import torchvision.transforms as T | |
| from model import DINO | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| ## Define Model and Dataset | |
| dataset = load_dataset("ethz/food101") | |
| model = DINO(batch_size_per_device=32, num_classes=1000).to(device) | |
| model.load_state_dict(torch.load("./bin/model.ckpt", map_location=device)["state_dict"]) | |
| def augment(img: np.ndarray) -> torch.Tensor: | |
| """ | |
| Helper Function to augment the image before we generate embeddings | |
| Args: | |
| img (np.ndarray): Input Image | |
| Returns: | |
| torch.Tensor | |
| """ | |
| img = Image.fromarray(img) | |
| if img.mode == "L": | |
| # Convert grayscale image to RGB by duplicating the single channel three times | |
| img = ImageOps.colorize(img, black="black", white="white") | |
| transforms = T.Compose( | |
| [T.ToTensor(), T.Resize(244), T.CenterCrop(224), T.Normalize([0.5], [0.5])] | |
| ) | |
| return transforms(img).unsqueeze(0) | |
| def search_index(input_image: np.ndarray, k: int = 1) -> list: | |
| """ | |
| Retrieve the Top k images from the given input image | |
| Args: | |
| input_image (np.ndarray): Input Image | |
| k (int): number of images to fetch | |
| Returns: | |
| list: List of top k images retrieved using the embeddings | |
| generated from the input image | |
| """ | |
| images = [] | |
| with torch.no_grad(): | |
| embedding = model(augment(input_image).to(device)) | |
| index = read_index("./bin/dino.index") | |
| _, results = index.search(np.array(embedding[0].reshape(1, -1)), k) | |
| indices = results[0] | |
| for _, index in enumerate(indices[:k]): | |
| retrieved_img = dataset["train"][int(index)]["image"] | |
| images.append(retrieved_img) | |
| return images | |
| app = gr.Interface( | |
| search_index, | |
| inputs=[ | |
| gr.Image(label="Input Image"), | |
| gr.Slider(minimum=1, maximum=10, value=4, step=1, label="Top K"), | |
| ], | |
| outputs=[ | |
| gr.Gallery(label="Retrieved Images"), | |
| ], | |
| article="## To read more about the development of the app please refer to the [Lightly AI blogpost on Vector Indexes and Image Retrieval](http://www.lightly.ai/post/vector-indexes-and-image-retrieval-using-lightly)", | |
| ) | |
| if __name__ == "__main__": | |
| app.launch() | |