SauravMaheshkar
commited on
feat: initial commit
Browse files- .gitattributes +1 -0
- app.py +92 -0
- assets/img.png +3 -0
- requirements.txt +3 -0
- segment-anything-2 +1 -0
- src/__init__.py +0 -0
- src/plot_utils.py +90 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import cv2
|
4 |
+
|
5 |
+
from PIL import Image
|
6 |
+
|
7 |
+
from src.plot_utils import show_masks
|
8 |
+
from gradio_image_annotation import image_annotator
|
9 |
+
|
10 |
+
|
11 |
+
from sam2.build_sam import build_sam2
|
12 |
+
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
13 |
+
|
14 |
+
choice_mapping = {
|
15 |
+
"tiny": ["sam2_hiera_t.yaml", "assets/checkpoints/sam2_hiera_tiny.pt"],
|
16 |
+
"small": ["sam2_hiera_s.yaml", "assets/checkpoints/sam2_hiera_small.pt"],
|
17 |
+
"base_plus": ["sam2_hiera_b+.yaml", "assets/checkpoints/sam2_hiera_base_plus.pt"],
|
18 |
+
"large": ["sam2_hiera_l.yaml", "assets/checkpoints/sam2_hiera_large.pt"],
|
19 |
+
}
|
20 |
+
|
21 |
+
|
22 |
+
def predict(model_choice: str, annotations, image):
|
23 |
+
config_file, ckpt_path = choice_mapping[str(model_choice)]
|
24 |
+
sam2_model = build_sam2(config_file, ckpt_path, device="cpu")
|
25 |
+
predictor = SAM2ImagePredictor(sam2_model)
|
26 |
+
predictor.set_image(image)
|
27 |
+
coordinates = np.array(
|
28 |
+
[
|
29 |
+
int(annotations["boxes"][0]["xmin"]),
|
30 |
+
int(annotations["boxes"][0]["ymin"]),
|
31 |
+
int(annotations["boxes"][0]["xmax"]),
|
32 |
+
int(annotations["boxes"][0]["ymax"]),
|
33 |
+
]
|
34 |
+
)
|
35 |
+
masks, scores, _ = predictor.predict(
|
36 |
+
point_coords=None,
|
37 |
+
point_labels=None,
|
38 |
+
box=coordinates[None, :],
|
39 |
+
multimask_output=False,
|
40 |
+
)
|
41 |
+
mask = masks.transpose(1, 2, 0)
|
42 |
+
mask_image = (mask * 255).astype(np.uint8) # Convert to uint8 format
|
43 |
+
cv2.imwrite("mask.png", mask_image)
|
44 |
+
|
45 |
+
return [
|
46 |
+
show_masks(image, masks, scores, box_coords=coordinates),
|
47 |
+
gr.DownloadButton("Download Mask", value="mask.png", visible=True),
|
48 |
+
]
|
49 |
+
|
50 |
+
|
51 |
+
with gr.Blocks(delete_cache=(30, 30)) as demo:
|
52 |
+
gr.Markdown(
|
53 |
+
"""
|
54 |
+
# 1. Choose Model Checkpoint
|
55 |
+
"""
|
56 |
+
)
|
57 |
+
with gr.Row():
|
58 |
+
model = gr.Dropdown(
|
59 |
+
choices=["tiny", "small", "base_plus", "large"],
|
60 |
+
value="tiny",
|
61 |
+
label="Model Checkpoint",
|
62 |
+
info="Which model checkpoint to load?",
|
63 |
+
)
|
64 |
+
|
65 |
+
gr.Markdown(
|
66 |
+
"""
|
67 |
+
# 2. Upload an Image
|
68 |
+
"""
|
69 |
+
)
|
70 |
+
|
71 |
+
with gr.Row():
|
72 |
+
img = gr.Image(value="./assets/img.png", type="numpy", label="Input Image")
|
73 |
+
|
74 |
+
gr.Markdown(
|
75 |
+
"""
|
76 |
+
# 3. Draw Bounding Box
|
77 |
+
"""
|
78 |
+
)
|
79 |
+
|
80 |
+
annotator = image_annotator(
|
81 |
+
value={"image": img.value["path"]},
|
82 |
+
disable_edit_boxes=True,
|
83 |
+
single_box=True,
|
84 |
+
label="Draw a bounding box",
|
85 |
+
)
|
86 |
+
btn = gr.Button("Get Segmentation Mask")
|
87 |
+
download_btn = gr.DownloadButton("Download Mask", value="mask.png", visible=False)
|
88 |
+
btn.click(
|
89 |
+
fn=predict, inputs=[model, annotator, img], outputs=[gr.Plot(), download_btn]
|
90 |
+
)
|
91 |
+
|
92 |
+
demo.launch()
|
assets/img.png
ADDED
Git LFS Details
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
gradio_image_annotation
|
3 |
+
-e segment-anything-2/
|
segment-anything-2
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 82b026cd5578af78757323ab99a0b5c8dc456cff
|
src/__init__.py
ADDED
File without changes
|
src/plot_utils.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
|
4 |
+
|
5 |
+
def show_mask(mask, ax, random_color=False, borders=True):
|
6 |
+
if random_color:
|
7 |
+
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
8 |
+
else:
|
9 |
+
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
|
10 |
+
h, w = mask.shape[-2:]
|
11 |
+
mask = mask.astype(np.uint8)
|
12 |
+
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
13 |
+
if borders:
|
14 |
+
import cv2
|
15 |
+
|
16 |
+
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
|
17 |
+
# Try to smooth contours
|
18 |
+
contours = [
|
19 |
+
cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours
|
20 |
+
]
|
21 |
+
mask_image = cv2.drawContours(
|
22 |
+
mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2
|
23 |
+
)
|
24 |
+
ax.imshow(mask_image)
|
25 |
+
|
26 |
+
|
27 |
+
def show_points(coords, labels, ax, marker_size=375):
|
28 |
+
pos_points = coords[labels == 1]
|
29 |
+
neg_points = coords[labels == 0]
|
30 |
+
ax.scatter(
|
31 |
+
pos_points[:, 0],
|
32 |
+
pos_points[:, 1],
|
33 |
+
color="green",
|
34 |
+
marker="*",
|
35 |
+
s=marker_size,
|
36 |
+
edgecolor="white",
|
37 |
+
linewidth=1.25,
|
38 |
+
)
|
39 |
+
ax.scatter(
|
40 |
+
neg_points[:, 0],
|
41 |
+
neg_points[:, 1],
|
42 |
+
color="red",
|
43 |
+
marker="*",
|
44 |
+
s=marker_size,
|
45 |
+
edgecolor="white",
|
46 |
+
linewidth=1.25,
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
def show_box(box, ax):
|
51 |
+
x0, y0 = box[0], box[1]
|
52 |
+
w, h = box[2] - box[0], box[3] - box[1]
|
53 |
+
ax.add_patch(
|
54 |
+
plt.Rectangle((x0, y0), w, h, edgecolor="green", facecolor=(0, 0, 0, 0), lw=2)
|
55 |
+
)
|
56 |
+
|
57 |
+
|
58 |
+
def show_masks(
|
59 |
+
image,
|
60 |
+
masks,
|
61 |
+
scores,
|
62 |
+
point_coords=None,
|
63 |
+
box_coords=None,
|
64 |
+
input_labels=None,
|
65 |
+
borders=True,
|
66 |
+
):
|
67 |
+
num_masks = len(masks)
|
68 |
+
num_cols = num_masks # Number of columns is equal to the number of masks
|
69 |
+
|
70 |
+
fig, axes = plt.subplots(1, num_cols, figsize=(5 * num_cols, 5))
|
71 |
+
|
72 |
+
if num_masks == 1:
|
73 |
+
axes = [axes] # Ensure axes is iterable when there's only one mask
|
74 |
+
|
75 |
+
for i, (mask, score) in enumerate(zip(masks, scores)):
|
76 |
+
ax = axes[i]
|
77 |
+
|
78 |
+
ax.imshow(image)
|
79 |
+
show_mask(mask, ax, borders=borders)
|
80 |
+
if point_coords is not None:
|
81 |
+
assert input_labels is not None
|
82 |
+
show_points(point_coords, input_labels, ax)
|
83 |
+
if box_coords is not None:
|
84 |
+
show_box(box_coords, ax)
|
85 |
+
if len(scores) > 1:
|
86 |
+
ax.set_title(f"Mask {i+1}, Score: {score:.3f}", fontsize=18)
|
87 |
+
ax.axis("off")
|
88 |
+
|
89 |
+
plt.tight_layout()
|
90 |
+
return plt
|