SauravMaheshkar's picture
feat: try switching to ZeroGPU
3d74359 unverified
raw
history blame
2.19 kB
import os
from typing import Any, Dict
import cv2
import gradio as gr
import numpy as np
import torch
from gradio_image_annotation import image_annotator
from sam2 import load_model
from sam2.sam2_image_predictor import SAM2ImagePredictor
from src.plot_utils import export_mask
from spaces import GPU
os.environ["ZEROGPU_V2"] = "true"
@GPU()
def predict(model_choice, annotations: Dict[str, Any]):
device = "cuda" if torch.cuda.is_available() else "cpu"
sam2_model = load_model(
variant=model_choice,
ckpt_path=f"assets/checkpoints/sam2_hiera_{model_choice}.pt",
device=device,
)
predictor = SAM2ImagePredictor(sam2_model) # type:ignore
predictor.set_image(annotations["image"])
coordinates = []
for i in range(len(annotations["boxes"])):
coordinate = [
int(annotations["boxes"][i]["xmin"]),
int(annotations["boxes"][i]["ymin"]),
int(annotations["boxes"][i]["xmax"]),
int(annotations["boxes"][i]["ymax"]),
]
coordinates.append(coordinate)
masks, scores, _ = predictor.predict(
point_coords=None,
point_labels=None,
box=np.array(coordinates),
multimask_output=False,
)
if masks.shape[0] == 1:
# handle single mask cases
masks = np.expand_dims(masks, axis=0)
return export_mask(masks)
with gr.Blocks(delete_cache=(30, 30)) as demo:
gr.Markdown(
"""
# 1. Choose Model Checkpoint
"""
)
with gr.Row():
model = gr.Dropdown(
choices=["tiny", "small", "base_plus", "large"],
value="tiny",
label="Model Checkpoint",
info="Which model checkpoint to load?",
)
gr.Markdown(
"""
# 2. Upload your Image and draw bounding box(es)
"""
)
annotator = image_annotator(
value={"image": cv2.imread("assets/example.png")},
disable_edit_boxes=True,
label="Draw a bounding box",
)
btn = gr.Button("Get Segmentation Mask(s)")
btn.click(
fn=predict, inputs=[model, annotator], outputs=[gr.Image(label="Mask(s)")]
)
demo.launch()