|
import os |
|
import sys |
|
import streamlit as st |
|
import pandas as pd |
|
import joblib |
|
import time |
|
import numpy as np |
|
from rdkit import Chem |
|
from rdkit.Chem import Draw |
|
from rdkit.Chem import AllChem |
|
from rdkit import RDLogger |
|
import uuid |
|
from datasets import load_dataset |
|
import requests |
|
from io import BytesIO |
|
import urllib.request |
|
import warnings |
|
warnings.filterwarnings('ignore') |
|
from model import OnTheFlyModel, HitSelectorByOverlap, CommunityDetector, task_evaluator |
|
from myFunctions import * |
|
from morgan_desc import * |
|
from physchem_desc import * |
|
from fragment_embedder import FragmentEmbedder |
|
import onnxruntime as rt |
|
|
|
st.set_page_config( |
|
page_title="Ligand Discovery 5: On-the-Fly ML Model", |
|
page_icon=":home:", |
|
layout="wide", |
|
initial_sidebar_state="expanded" |
|
) |
|
|
|
st.markdown(""" |
|
<style> |
|
.css-13sdm1b.e16nr0p33 { |
|
margin-top: -75px; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
hide_streamlit_style = """ |
|
<style> |
|
#MainMenu {visibility: hidden;} |
|
footer {visibility: hidden;} |
|
#header {visibility: hidden;} |
|
</style> |
|
""" |
|
st.markdown(hide_streamlit_style, unsafe_allow_html=True) |
|
|
|
session_id = get_session_id() |
|
|
|
RDLogger.DisableLog("rdApp.*") |
|
|
|
root = os.path.dirname(os.path.abspath(__file__)) |
|
|
|
cache_folder = os.path.join(root, ".", "cache") |
|
if not os.path.exists(cache_folder): |
|
os.mkdir(cache_folder) |
|
clear_old_cache(cache_folder, hours=24) |
|
|
|
old_clusters_cache_file = None |
|
|
|
df = None |
|
|
|
|
|
|
|
CRF_PATTERN = "CC1(CCC#C)N=N1" |
|
CRF_PATTERN_0 = "C#CC" |
|
CRF_PATTERN_1 = "N=N" |
|
|
|
crf_0 = "C#CCC1(N=N1)CCNC(CC)=O" |
|
crf_0 = "ONC(=O)CCC1(CCC#C)N=N1" |
|
crf_1 = "C#CCC1(N=N1)CCC(=O)[N]" |
|
|
|
SIMILARITY_PERCENTILES = [95, 90] |
|
|
|
hits, fid_prom, pid_prom = load_hits() |
|
pid2name, name2pid, any2pid = pid2name_mapper() |
|
fid2smi = load_fid2smi() |
|
|
|
st.sidebar.title("Ligand Discovery 5: On-the-Fly Model") |
|
st.sidebar.write("this app builds a quick ML model for your proteins of interest") |
|
|
|
st.sidebar.subheader(":mag: UniProt Accession IDs or Gene Name") |
|
|
|
text = st.sidebar.text_area("For example, you can query VDAC2", placeholder = "VDAC2", help="Write one protein per line. UniProt AC format is preferred. Only proteins available in the Ligand Discovery interactome will be considered") |
|
|
|
input_tokens = text.split() |
|
input_pids = [] |
|
for it in input_tokens: |
|
if it in any2pid: |
|
pid = any2pid[it] |
|
if pid in pid_prom: |
|
input_pids += [any2pid[it]] |
|
|
|
input_data = pids_to_dataframe(input_pids, pid2name, pid_prom) |
|
|
|
tfidf = True |
|
|
|
if input_data.shape[0] == 0: |
|
has_input = False |
|
if len(input_tokens) > 0: |
|
st.sidebar.warning( |
|
"None of your input proteins was found in the Ligand Discovery interactome.".format( |
|
len(input_pids), len(input_tokens) |
|
) |
|
) |
|
else: |
|
has_input = True |
|
|
|
if has_input: |
|
print("Instantiating on the fly model") |
|
model = OnTheFlyModel() |
|
is_fitted = False |
|
st.sidebar.info( |
|
"{0} out of {1} input proteins were found in the Ligand Discovery interactome, corresponding to all statistically significant fragment-protein pairs.".format( |
|
len(input_pids), len(input_tokens) |
|
) |
|
) |
|
|
|
st.sidebar.dataframe(input_data, hide_index=True) |
|
|
|
uniprot_inputs = list(input_data["UniprotAC"]) |
|
if len(uniprot_inputs) == 1: |
|
print("Only one protein") |
|
clusters_of_proteins = [uniprot_inputs] |
|
else: |
|
graph = get_protein_graph(uniprot_inputs) |
|
auroc_cut = 0.7 |
|
graph_key = "-".join(sorted(graph.nodes())) |
|
clusters_cache_file = os.path.join( |
|
root, "..", "cache", session_id + "_clusters.joblib" |
|
) |
|
clusters_of_proteins = None |
|
if os.path.exists(clusters_cache_file): |
|
gk, clu = joblib.load(clusters_cache_file) |
|
if gk == graph_key: |
|
clusters_of_proteins = clu |
|
if clusters_of_proteins is None: |
|
if old_clusters_cache_file is not None: |
|
os.path.remove(old_clusters_cache_file) |
|
community_detector = CommunityDetector(tfidf=tfidf, auroc_cut=auroc_cut) |
|
clusters_of_proteins = community_detector.cluster(model, graph) |
|
clusters_of_proteins = clusters_of_proteins["ok"] |
|
joblib.dump((graph_key, clusters_of_proteins), clusters_cache_file) |
|
old_clusters_cache_file = clusters_cache_file |
|
|
|
cols = st.columns([0.3, 0.7]) |
|
col = cols[0] |
|
|
|
col.subheader(":robot_face: Quick modeling") |
|
|
|
only_one_option = False |
|
if len(clusters_of_proteins) == 1: |
|
if sorted(clusters_of_proteins[0]) == sorted(list(input_data["UniprotAC"])): |
|
only_one_option = True |
|
|
|
options = [] |
|
if not only_one_option: |
|
for prot_clust in clusters_of_proteins: |
|
options += [", ".join(sorted([pid2name[pid] for pid in prot_clust]))] |
|
options += ["Full set of proteins"] |
|
else: |
|
if len(clusters_of_proteins[0]) == 1: |
|
options = [pid2name[clusters_of_proteins[0][0]]] |
|
else: |
|
options = ["Full set of proteins"] |
|
|
|
selected_cluster = col.radio( |
|
"These are some suggested groups of proteins for modeling", |
|
options=options, |
|
) |
|
|
|
if selected_cluster == "Full set of proteins": |
|
selected_cluster = uniprot_inputs |
|
else: |
|
selected_cluster = [name2pid[n] for n in selected_cluster.split(", ")] |
|
|
|
print("Cluster selection done") |
|
default_max_hit_fragments = 100 |
|
default_max_fragment_prom = 500 |
|
|
|
max_hit_fragments = col.slider( |
|
"Maximum number of positives", |
|
min_value=10, |
|
max_value=200, |
|
step=10, |
|
value=default_max_hit_fragments, |
|
help="Fragments will be ranked by specificity, i.e. by ascending value of promiscuity.", |
|
) |
|
|
|
max_fragment_prom = col.slider( |
|
"Maximum promiscuity of included fragments", |
|
min_value=50, |
|
max_value=500, |
|
step=10, |
|
value=default_max_fragment_prom, |
|
help="Maximum number of proteins for included fragments.", |
|
) |
|
|
|
uniprot_acs = list(selected_cluster) |
|
|
|
data = HitSelectorByOverlap(uniprot_acs=uniprot_acs, tfidf=tfidf).select( |
|
max_hit_fragments=max_hit_fragments, max_fragment_promiscuity=max_fragment_prom |
|
) |
|
print("Selecting hits by overlap") |
|
|
|
num_positives = len(data[data["y"] == 1]) |
|
num_total = len(data[data["y"] != -1]) |
|
|
|
subcols = col.columns(3) |
|
subcols[0].metric( |
|
"Positives", |
|
value=num_positives, |
|
help="Number of positive fragments (i.e. fragments that interact with at least one of the selected proteins). Fragments are ranked by their sum of TF-IDF scores, meaning that the fragments that interact with more proteins will be ranked higher. Interacting with specific proteins will also uprank fragments.", |
|
) |
|
|
|
subcols[1].metric( |
|
"Total", |
|
value=num_total, |
|
help="Total number of fragments (positive and negative) used in the model. This value decreases as you decrease the maximum promiscuity of included fragments threshold.", |
|
) |
|
|
|
subcols[2].metric( |
|
"Rate", |
|
value="{0:.1f}%".format(num_positives / num_total * 100), |
|
help="Ratio of positives to total fragments.", |
|
) |
|
|
|
if num_positives == 0: |
|
col.error( |
|
"No positives available. We cannot build a model with no positive data." |
|
) |
|
is_fitted = False |
|
|
|
else: |
|
task_evaluation = task_evaluator(model, data) |
|
subcols[0].metric( |
|
label="Corr. prom", |
|
value="{0:.3f}".format(task_evaluation["ref_rho"]), |
|
help="Correlation between model outcomes and fragment promiscuity predictors. If you wish to have models that are less correlated with promiscuity, consider lowering the maximum promiscuity of included fragments threshold.", |
|
) |
|
subcols[1].metric( |
|
label="Frag. promiscuity", |
|
value="{0:.1f}".format(task_evaluation["prom"]), |
|
help="Average promiscuity of positive fragments. This helps understand how promiscuous the fragments are that are being used to build the model, with a focus on the positive class.", |
|
) |
|
subcols[2].metric( |
|
label="Interactors ({0})".format(len(uniprot_acs)), |
|
value="{0:.1f}".format(task_evaluation["hits"]), |
|
help="Average number of query proteins that interact with positive fragments. If you want this number to be higher, consider decreasing the maximum number of positives threshold in order to focus on the fragments that have the highest protein coverage.", |
|
) |
|
print("Task evaluator done") |
|
|
|
expander = col.expander("View positives") |
|
positives_data = data[data["y"] == 1] |
|
pos_fids = sorted(positives_data["fid"]) |
|
pos_smis = [fid2smi[fid] for fid in pos_fids] |
|
expander.dataframe( |
|
pd.DataFrame({"FragmentID": pos_fids, "SMILES": pos_smis}), hide_index=True |
|
) |
|
expander = col.expander("View negatives") |
|
negatives_data = data[data["y"] == 0] |
|
neg_fids = sorted(negatives_data["fid"]) |
|
neg_smis = [fid2smi[fid] for fid in neg_fids] |
|
expander.dataframe( |
|
pd.DataFrame({"FragmentID": neg_fids, "SMILES": neg_smis}), hide_index=True |
|
) |
|
|
|
if num_positives < 5: |
|
col.warning("Not enough data to estimate AUROC.") |
|
|
|
else: |
|
auroc = task_evaluation["auroc"] |
|
col.metric( |
|
"AUROC estimation", value="{0:.3f} ± {1:.3f}".format(auroc[0], auroc[1]) |
|
) |
|
subcols = col.columns(3) |
|
|
|
is_ready = True |
|
|
|
if is_ready: |
|
col = cols[1] |
|
|
|
col.subheader(":crystal_ball: Make predictions") |
|
|
|
input_prediction_tokens = col.text_area( |
|
label="Input your SMILES of interest. Ideally, they should have the diazirine fragment", |
|
help="Paste molecules in SMILES format, one per line. Try to include the CRF pattern in your input molecules. If no CRF pattern is present, it will be automatically attached.", |
|
) |
|
|
|
col.markdown("Below you can find a few suggested molecules to try out:") |
|
col.text("\n".join(pos_smis[:2] + neg_smis[:2])) |
|
|
|
pred_tokens = [t for t in input_prediction_tokens.split("\n") if t != ""] |
|
|
|
smiles_list = [] |
|
original_smiles_list = [] |
|
have_crf_count = 0 |
|
attached_crf_count = 0 |
|
for token in pred_tokens: |
|
if not is_valid_smiles(token): |
|
continue |
|
smi = token |
|
if not has_crf(Chem.MolFromSmiles(smi), CRF_PATTERN): |
|
smi = attach_crf(smi) |
|
if smi is None: |
|
continue |
|
attached_crf_count += 1 |
|
else: |
|
have_crf_count += 1 |
|
smiles_list += [smi] |
|
original_smiles_list += [token] |
|
|
|
if len(smiles_list) == 0: |
|
has_prediction_input = False |
|
if len(pred_tokens) > 0: |
|
col.warning( |
|
"No valid inputs were found. Please make sure the CRF pattern is present: {0}".format( |
|
CRF_PATTERN |
|
) |
|
) |
|
else: |
|
has_prediction_input = True |
|
|
|
if has_prediction_input: |
|
model.fit(data["y"]) |
|
|
|
col.info( |
|
"{0} out of {1} input molecules are valid. Of these, {2} had the CRF already, and for {3} of them it was automatically attached".format( |
|
len(smiles_list), |
|
len(pred_tokens), |
|
have_crf_count, |
|
attached_crf_count, |
|
) |
|
) |
|
do_tau = False |
|
if do_tau: |
|
y_hat, tau_ref, tau_train = model.predict_proba_and_tau(smiles_list) |
|
dr = pd.DataFrame( |
|
{ |
|
"SMILES": smiles_list, |
|
"OriginalSMILES": original_smiles_list, |
|
"Score": y_hat, |
|
"Tau": tau_ref, |
|
"TauTrain": tau_train, |
|
} |
|
) |
|
for v in dr.values: |
|
expander = col.expander( |
|
"Score: `{0:.3f}` | Tau: `{1:.2f}` | Tau Train: `{2:.2f}`| SMILES: `{3}`".format( |
|
v[1], v[2], v[3], v[0] |
|
) |
|
) |
|
expander.image(get_fragment_image(v[0])) |
|
else: |
|
y_hat = model.predict_proba(smiles_list)[:, 1] |
|
dr = pd.DataFrame( |
|
{ |
|
"SMILES": smiles_list, |
|
"OriginalSMILES": original_smiles_list, |
|
"Score": y_hat, |
|
} |
|
) |
|
for v in dr.values: |
|
expander = col.expander( |
|
"Score: `{0:.3f}` | SMILES: `{1}`".format(v[2], v[1]) |
|
) |
|
expander.image(get_fragment_image(v[1])) |
|
dr_ = dr[["OriginalSMILES", "Score"]] |
|
dr_.rename(columns={"OriginalSMILES": "SMILES"}, inplace=True) |
|
col.download_button( |
|
label="Download results as CSV", |
|
data=dr_.to_csv(), |
|
file_name="prediction_output.csv", |
|
mime="text/csv", |
|
) |
|
del model |