Spaces:
Runtime error
Runtime error
lifeofcoding
commited on
Commit
•
955b037
1
Parent(s):
3ecbde7
trying new demo
Browse files- requirements.txt +8 -2
- app.py +113 -23
requirements.txt
CHANGED
@@ -1,2 +1,8 @@
|
|
1 |
-
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets
|
2 |
+
loralib
|
3 |
+
sentencepiece
|
4 |
+
git+https://github.com/huggingface/transformers.git
|
5 |
+
accelerate
|
6 |
+
bitsandbytes
|
7 |
+
git+https://github.com/huggingface/peft.git
|
8 |
+
gradio
|
app.py
CHANGED
@@ -4,11 +4,116 @@ import gradio as gr
|
|
4 |
from gradio.themes.base import Base
|
5 |
from gradio.themes.utils import colors, fonts, sizes
|
6 |
|
7 |
-
|
8 |
-
from
|
9 |
-
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
|
14 |
ins = '''Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
@@ -28,21 +133,6 @@ theme = gr.themes.Monochrome(
|
|
28 |
|
29 |
|
30 |
|
31 |
-
# def generate(instruction):
|
32 |
-
# response = llm(ins.format(instruction))
|
33 |
-
# response = response['choices'][0]['text']
|
34 |
-
# result = ""
|
35 |
-
# for word in response.split(" "):
|
36 |
-
# result += word + " "
|
37 |
-
# yield result
|
38 |
-
|
39 |
-
def generate(instruction):
|
40 |
-
result = ""
|
41 |
-
for x in llm(ins.format(instruction), stop=['### Instruction:', '### End'], stream=True):
|
42 |
-
result += x['choices'][0]['text']
|
43 |
-
yield result
|
44 |
-
|
45 |
-
|
46 |
examples = [
|
47 |
"Instead of making a peanut butter and jelly sandwich, what else could I combine peanut butter with in a sandwich? Give five ideas",
|
48 |
"How do I make a campfire?",
|
@@ -51,7 +141,7 @@ examples = [
|
|
51 |
]
|
52 |
|
53 |
def process_example(args):
|
54 |
-
for x in
|
55 |
pass
|
56 |
return x
|
57 |
|
@@ -137,7 +227,7 @@ with gr.Blocks(theme=seafoam, analytics_enabled=False, css=css) as demo:
|
|
137 |
|
138 |
|
139 |
|
140 |
-
submit.click(
|
141 |
-
instruction.submit(
|
142 |
|
143 |
demo.queue(concurrency_count=1).launch(debug=True)
|
|
|
4 |
from gradio.themes.base import Base
|
5 |
from gradio.themes.utils import colors, fonts, sizes
|
6 |
|
7 |
+
import torch
|
8 |
+
from peft import PeftModel
|
9 |
+
import transformers
|
10 |
+
|
11 |
+
assert (
|
12 |
+
"LlamaTokenizer" in transformers._import_structure["models.llama"]
|
13 |
+
), "LLaMA is now in HuggingFace's main branch.\nPlease reinstall it: pip uninstall transformers && pip install git+https://github.com/huggingface/transformers.git"
|
14 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
|
15 |
+
|
16 |
+
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
|
17 |
+
|
18 |
+
BASE_MODEL = "decapoda-research/llama-7b-hf"
|
19 |
+
LORA_WEIGHTS = "lifeofcoding/alpaca-lora-movie-review-sentiment"
|
20 |
+
|
21 |
+
if torch.cuda.is_available():
|
22 |
+
device = "cuda"
|
23 |
+
else:
|
24 |
+
device = "cpu"
|
25 |
+
|
26 |
+
try:
|
27 |
+
if torch.backends.mps.is_available():
|
28 |
+
device = "mps"
|
29 |
+
except:
|
30 |
+
pass
|
31 |
+
|
32 |
+
if device == "cuda":
|
33 |
+
model = LlamaForCausalLM.from_pretrained(
|
34 |
+
BASE_MODEL,
|
35 |
+
load_in_8bit=False,
|
36 |
+
torch_dtype=torch.float16,
|
37 |
+
device_map="auto",
|
38 |
+
)
|
39 |
+
model = PeftModel.from_pretrained(
|
40 |
+
model, LORA_WEIGHTS, torch_dtype=torch.float16, force_download=True
|
41 |
+
)
|
42 |
+
elif device == "mps":
|
43 |
+
model = LlamaForCausalLM.from_pretrained(
|
44 |
+
BASE_MODEL,
|
45 |
+
device_map={"": device},
|
46 |
+
torch_dtype=torch.float16,
|
47 |
+
)
|
48 |
+
model = PeftModel.from_pretrained(
|
49 |
+
model,
|
50 |
+
LORA_WEIGHTS,
|
51 |
+
device_map={"": device},
|
52 |
+
torch_dtype=torch.float16,
|
53 |
+
)
|
54 |
+
else:
|
55 |
+
model = LlamaForCausalLM.from_pretrained(
|
56 |
+
BASE_MODEL, device_map={"": device}, low_cpu_mem_usage=True
|
57 |
+
)
|
58 |
+
model = PeftModel.from_pretrained(
|
59 |
+
model,
|
60 |
+
LORA_WEIGHTS,
|
61 |
+
device_map={"": device},
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
def generate_prompt(instruction, input=None):
|
66 |
+
if input:
|
67 |
+
return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
68 |
+
### Instruction:
|
69 |
+
{instruction}
|
70 |
+
### Input:
|
71 |
+
{input}
|
72 |
+
### Response:"""
|
73 |
+
else:
|
74 |
+
return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
75 |
+
### Instruction:
|
76 |
+
{instruction}
|
77 |
+
### Response:"""
|
78 |
+
|
79 |
+
if device != "cpu":
|
80 |
+
model.half()
|
81 |
+
model.eval()
|
82 |
+
if torch.__version__ >= "2":
|
83 |
+
model = torch.compile(model)
|
84 |
+
|
85 |
+
|
86 |
+
def evaluate(
|
87 |
+
instruction,
|
88 |
+
input=None,
|
89 |
+
temperature=0.1,
|
90 |
+
top_p=0.75,
|
91 |
+
top_k=40,
|
92 |
+
num_beams=4,
|
93 |
+
max_new_tokens=128,
|
94 |
+
**kwargs,
|
95 |
+
):
|
96 |
+
prompt = generate_prompt(instruction, input)
|
97 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
98 |
+
input_ids = inputs["input_ids"].to(device)
|
99 |
+
generation_config = GenerationConfig(
|
100 |
+
temperature=temperature,
|
101 |
+
top_p=top_p,
|
102 |
+
top_k=top_k,
|
103 |
+
num_beams=num_beams,
|
104 |
+
**kwargs,
|
105 |
+
)
|
106 |
+
with torch.no_grad():
|
107 |
+
generation_output = model.generate(
|
108 |
+
input_ids=input_ids,
|
109 |
+
generation_config=generation_config,
|
110 |
+
return_dict_in_generate=True,
|
111 |
+
output_scores=True,
|
112 |
+
max_new_tokens=max_new_tokens,
|
113 |
+
)
|
114 |
+
s = generation_output.sequences[0]
|
115 |
+
output = tokenizer.decode(s)
|
116 |
+
return output.split("### Response:")[1].strip()
|
117 |
|
118 |
|
119 |
ins = '''Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
|
|
133 |
|
134 |
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
examples = [
|
137 |
"Instead of making a peanut butter and jelly sandwich, what else could I combine peanut butter with in a sandwich? Give five ideas",
|
138 |
"How do I make a campfire?",
|
|
|
141 |
]
|
142 |
|
143 |
def process_example(args):
|
144 |
+
for x in evaluate(args):
|
145 |
pass
|
146 |
return x
|
147 |
|
|
|
227 |
|
228 |
|
229 |
|
230 |
+
submit.click(evaluate, inputs=[instruction], outputs=[output])
|
231 |
+
instruction.submit(evaluate, inputs=[instruction], outputs=[output])
|
232 |
|
233 |
demo.queue(concurrency_count=1).launch(debug=True)
|