|
import gradio as gr |
|
import requests |
|
from cachetools import cached, TTLCache |
|
from bs4 import BeautifulSoup |
|
from httpx import Client |
|
import json |
|
from pathlib import Path |
|
from huggingface_hub import CommitScheduler |
|
from dotenv import load_dotenv |
|
import os |
|
from functools import lru_cache |
|
from typing import Tuple |
|
|
|
load_dotenv() |
|
|
|
HF_TOKEN = os.getenv("HF_TOKEN") |
|
|
|
CACHE_TIME = 60 * 60 * 6 |
|
|
|
client = Client() |
|
|
|
REPO_ID = "librarian-bots/paper-recommendations-v2" |
|
|
|
scheduler = CommitScheduler( |
|
repo_id=REPO_ID, |
|
repo_type="dataset", |
|
folder_path="comments", |
|
path_in_repo="data", |
|
every=5, |
|
token=HF_TOKEN, |
|
) |
|
|
|
|
|
def parse_arxiv_id_from_paper_url(url): |
|
return url.split("/")[-1] |
|
|
|
|
|
@cached(cache=TTLCache(maxsize=500, ttl=CACHE_TIME)) |
|
def get_recommendations_from_semantic_scholar(semantic_scholar_id: str): |
|
try: |
|
r = requests.post( |
|
"https://api.semanticscholar.org/recommendations/v1/papers/", |
|
json={ |
|
"positivePaperIds": [semantic_scholar_id], |
|
}, |
|
params={"fields": "externalIds,title,year", "limit": 10}, |
|
) |
|
return r.json()["recommendedPapers"] |
|
except KeyError as e: |
|
raise gr.Error( |
|
"Error getting recommendations, if this is a new paper it may not yet have" |
|
" been indexed by Semantic Scholar." |
|
) from e |
|
|
|
|
|
def filter_recommendations(recommendations, max_paper_count=5): |
|
|
|
arxiv_paper = [ |
|
r for r in recommendations if r["externalIds"].get("ArXiv", None) is not None |
|
] |
|
if len(arxiv_paper) > max_paper_count: |
|
arxiv_paper = arxiv_paper[:max_paper_count] |
|
return arxiv_paper |
|
|
|
|
|
@cached(cache=TTLCache(maxsize=500, ttl=CACHE_TIME)) |
|
def get_paper_title_from_arxiv_id(arxiv_id): |
|
try: |
|
return requests.get(f"https://huggingface.co/api/papers/{arxiv_id}").json()[ |
|
"title" |
|
] |
|
except Exception as e: |
|
print(f"Error getting paper title for {arxiv_id}: {e}") |
|
raise gr.Error("Error getting paper title for {arxiv_id}: {e}") from e |
|
|
|
|
|
def format_recommendation_into_markdown(arxiv_id, recommendations): |
|
|
|
|
|
|
|
comment = "The following papers were recommended by the Semantic Scholar API \n\n" |
|
for r in recommendations: |
|
hub_paper_url = f"https://huggingface.co/papers/{r['externalIds']['ArXiv']}" |
|
comment += f"* [{r['title']}]({hub_paper_url}) ({r['year']})\n" |
|
return comment |
|
|
|
|
|
def format_comment(result: str): |
|
result = ( |
|
"This is an automated message from the [Librarian Bot](https://huggingface.co/librarian-bots). I found the following papers similar to this paper. \n\n" |
|
+ result |
|
) |
|
result += "\n\n Please give a thumbs up to this comment if you found it helpful!" |
|
result += "\n\n If you want recommendations for any Paper on Hugging Face checkout [this](https://huggingface.co/spaces/librarian-bots/recommend_similar_papers) Space" |
|
result += "\n\n You can directly ask Librarian Bot for paper recommendations by tagging it in a comment: `@librarian-bot recommend`" |
|
return result |
|
|
|
|
|
from typing import Tuple |
|
|
|
|
|
def post_comment( |
|
paper_url: str, comment: str, comment_id: str | None = None, token: str = HF_TOKEN |
|
) -> Tuple[bool, str]: |
|
""" |
|
Post a comment on a paper or a reply to a comment using the Hugging Face API. |
|
|
|
Args: |
|
paper_url (str): The URL of the paper to post the comment on. |
|
comment (str): The text of the comment or reply to post. |
|
comment_id (str, optional): The ID of the comment to reply to. If provided, the function will post a reply to the specified comment. Defaults to None. |
|
token (str, optional): The authentication token to use for the API request. Defaults to HF_TOKEN. |
|
|
|
Returns: |
|
Tuple[bool, str]: A tuple containing two elements: |
|
- bool: True if the comment or reply was posted successfully, False otherwise. |
|
- str: The ID of the posted comment or reply if successful, an empty string otherwise. |
|
|
|
Raises: |
|
requests.exceptions.RequestException: If an error occurs while making the API request. |
|
""" |
|
try: |
|
paper_id = paper_url.split("/")[-1] |
|
if comment_id: |
|
url = f"https://huggingface.co/api/papers/{paper_id}/comment/{comment_id}/reply" |
|
else: |
|
url = f"https://huggingface.co/api/papers/{paper_id}/comment" |
|
|
|
headers = { |
|
"Authorization": f"Bearer {token}", |
|
"Content-Type": "application/json", |
|
} |
|
comment_data = {"comment": comment} |
|
|
|
response = requests.post(url, json=comment_data, headers=headers) |
|
|
|
if response.status_code == 201: |
|
posted_comment_id = response.json().get("id", "") |
|
if comment_id: |
|
print( |
|
f"Reply posted successfully to comment {comment_id} for {paper_url}. Reply ID: {posted_comment_id}" |
|
) |
|
else: |
|
print( |
|
f"Comment posted successfully for {paper_url}. Comment ID: {posted_comment_id}" |
|
) |
|
return True, posted_comment_id |
|
else: |
|
print( |
|
f"Failed to post {'reply' if comment_id else 'comment'} for {paper_url}. Status code: {response.status_code}" |
|
) |
|
print(f"Response text: {response.text}") |
|
return False, "" |
|
|
|
except requests.exceptions.RequestException as e: |
|
print( |
|
f"Error posting {'reply' if comment_id else 'comment'} for {paper_url}: {e}" |
|
) |
|
return False, "" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def check_if_lib_bot_comment_exists(paper_url: str) -> Tuple[bool, str]: |
|
""" |
|
Check if a comment or reply from the librarian-bot exists for a given paper URL using the Hugging Face API. |
|
|
|
Args: |
|
paper_url (str): The URL of the paper to check for librarian-bot comments. |
|
|
|
Returns: |
|
Tuple[bool, str]: A tuple containing two elements: |
|
- bool: True if a comment or reply from the librarian-bot is found, False otherwise. |
|
- str: The ID of the comment if a librarian-bot comment is found, an empty string otherwise. |
|
|
|
Raises: |
|
Exception: If an error occurs while retrieving comments from the API. |
|
""" |
|
try: |
|
paper_id = paper_url.split("/")[-1] |
|
url = f"https://huggingface.co/api/papers/{paper_id}/?field=comments" |
|
headers = {"Authorization": f"Bearer {HF_TOKEN}"} |
|
response = requests.get(url, headers=headers) |
|
|
|
if response.status_code == 200: |
|
paper_data = response.json() |
|
comments = paper_data.get("comments", []) |
|
for comment in comments: |
|
comment_author = comment.get("author", {}).get("name") |
|
if comment_author == "librarian-bot": |
|
return True, comment.get("id") |
|
replies = comment.get("replies", []) |
|
for reply in replies: |
|
reply_author = reply.get("author", {}).get("name") |
|
if reply_author == "librarian-bot": |
|
return True, comment.get("id") |
|
else: |
|
print( |
|
f"Failed to retrieve comments for {paper_url}. Status code: {response.status_code}" |
|
) |
|
|
|
return False, "" |
|
except Exception as e: |
|
print(f"Error checking if comment exists for {paper_url}: {e}") |
|
return True, "" |
|
|
|
|
|
def log_comments(paper_url: str, comment: str): |
|
""" |
|
Logs comments for a given paper URL. |
|
|
|
Args: |
|
paper_url (str): The URL of the paper. |
|
comment (str): The comment to be logged. |
|
|
|
Returns: |
|
None |
|
""" |
|
paper_id = paper_url.split("/")[-1] |
|
file_path = Path(f"comments/{paper_id}.json") |
|
if not file_path.exists(): |
|
with scheduler.lock: |
|
with open(file_path, "w") as f: |
|
data = {"paper_url": paper_url, "comment": comment} |
|
json.dump(data, f) |
|
|
|
|
|
def return_recommendations( |
|
url: str, comment_id: str | None = None, post_to_paper: bool = True |
|
) -> str: |
|
arxiv_id = parse_arxiv_id_from_paper_url(url) |
|
recommendations = get_recommendations_from_semantic_scholar(f"ArXiv:{arxiv_id}") |
|
filtered_recommendations = filter_recommendations(recommendations) |
|
if post_to_paper: |
|
existing_comments, comment_id = check_if_lib_bot_comment_exists(url) |
|
if existing_comments: |
|
gr.Info(f"Existing comment: {comment_id}...skipping posting comment") |
|
else: |
|
comment = format_comment( |
|
format_recommendation_into_markdown(arxiv_id, filtered_recommendations) |
|
) |
|
if comment_id: |
|
comment_status, posted_comment_id = post_comment( |
|
url, comment, comment_id, token=HF_TOKEN |
|
) |
|
if comment_status: |
|
log_comments(url, comment) |
|
gr.Info(f"Posted reply to comment {posted_comment_id}") |
|
if not comment_id: |
|
comment_status, posted_comment_id = post_comment( |
|
url, comment, token=HF_TOKEN |
|
) |
|
if comment_status: |
|
log_comments(url, comment) |
|
gr.Info(f"Posted comment {posted_comment_id}") |
|
else: |
|
gr.Info("Failed to post comment") |
|
return format_recommendation_into_markdown(arxiv_id, filtered_recommendations) |
|
|
|
|
|
title = "Semantic Scholar Paper Recommender" |
|
description = ( |
|
"Paste a link to a paper on Hugging Face Papers and get recommendations for similar" |
|
" papers from Semantic Scholar. **Note**: Some papers may not have recommendations" |
|
" yet if they are new or have not been indexed by Semantic Scholar." |
|
) |
|
examples = [ |
|
["https://huggingface.co/papers/2309.12307", None, False], |
|
["https://huggingface.co/papers/2211.10086", None, False], |
|
] |
|
interface = gr.Interface( |
|
return_recommendations, |
|
[ |
|
gr.Textbox(lines=1), |
|
gr.Textbox(None, lines=1, label="Comment ID (only for API)", visible=False), |
|
gr.Checkbox(False, label="Post recommendations to Paper page?"), |
|
], |
|
gr.Markdown(), |
|
examples=examples, |
|
title=title, |
|
description=description, |
|
) |
|
interface.queue() |
|
interface.launch() |
|
|