Commit
•
253bbca
1
Parent(s):
2c17b5e
language detection app draft
Browse files
app.py
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from httpx import Client
|
3 |
+
import random
|
4 |
+
import os
|
5 |
+
import fasttext
|
6 |
+
from huggingface_hub import hf_hub_download
|
7 |
+
from typing import Union
|
8 |
+
from typing import Iterator
|
9 |
+
from dotenv import load_dotenv
|
10 |
+
from toolz import groupby, valmap, concat
|
11 |
+
from statistics import mean
|
12 |
+
from httpx import Timeout
|
13 |
+
from huggingface_hub.utils import logging
|
14 |
+
|
15 |
+
logger = logging.get_logger(__name__)
|
16 |
+
load_dotenv()
|
17 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
18 |
+
|
19 |
+
|
20 |
+
BASE_DATASETS_SERVER_URL = "https://datasets-server.huggingface.co"
|
21 |
+
DEFAULT_FAST_TEXT_MODEL = "laurievb/OpenLID"
|
22 |
+
headers = {
|
23 |
+
"authorization": f"Bearer ${HF_TOKEN}",
|
24 |
+
}
|
25 |
+
timeout = Timeout(60, read=120)
|
26 |
+
client = Client(headers=headers, timeout=timeout)
|
27 |
+
# non exhaustive list of columns that might contain text which can be used for language detection
|
28 |
+
# we prefer to use columns in this order i.e. if there is a column named "text" we will use it first
|
29 |
+
TARGET_COLUMN_NAMES = {
|
30 |
+
"text",
|
31 |
+
"input",
|
32 |
+
"tokens",
|
33 |
+
"prompt",
|
34 |
+
"instruction",
|
35 |
+
"sentence_1",
|
36 |
+
"question",
|
37 |
+
"sentence2",
|
38 |
+
"answer",
|
39 |
+
"sentence",
|
40 |
+
"response",
|
41 |
+
"context",
|
42 |
+
"query",
|
43 |
+
}
|
44 |
+
|
45 |
+
|
46 |
+
def datasets_server_valid_rows(hub_id: str):
|
47 |
+
resp = client.get(f"{BASE_DATASETS_SERVER_URL}/is-valid?dataset={hub_id}")
|
48 |
+
resp.raise_for_status()
|
49 |
+
return resp.json()["viewer"]
|
50 |
+
|
51 |
+
|
52 |
+
def get_first_config_and_split_name(hub_id: str):
|
53 |
+
resp = client.get(f"https://datasets-server.huggingface.co/splits?dataset={hub_id}")
|
54 |
+
resp.raise_for_status()
|
55 |
+
data = resp.json()
|
56 |
+
return data["splits"][0]["config"], data["splits"][0]["split"]
|
57 |
+
|
58 |
+
|
59 |
+
def get_dataset_info(hub_id: str, config: str | None = None):
|
60 |
+
if config is None:
|
61 |
+
config = get_first_config_and_split_name(hub_id)
|
62 |
+
if config is None:
|
63 |
+
return None
|
64 |
+
else:
|
65 |
+
config = config[0]
|
66 |
+
resp = client.get(
|
67 |
+
f"{BASE_DATASETS_SERVER_URL}/info?dataset={hub_id}&config={config}"
|
68 |
+
)
|
69 |
+
resp.raise_for_status()
|
70 |
+
return resp.json()
|
71 |
+
|
72 |
+
|
73 |
+
def get_random_rows(
|
74 |
+
hub_id,
|
75 |
+
total_length,
|
76 |
+
number_of_rows,
|
77 |
+
max_request_calls,
|
78 |
+
config="default",
|
79 |
+
split="train",
|
80 |
+
):
|
81 |
+
rows = []
|
82 |
+
rows_per_call = min(
|
83 |
+
number_of_rows // max_request_calls, total_length // max_request_calls
|
84 |
+
)
|
85 |
+
rows_per_call = min(rows_per_call, 100) # Ensure rows_per_call is not more than 100
|
86 |
+
for _ in range(min(max_request_calls, number_of_rows // rows_per_call)):
|
87 |
+
offset = random.randint(0, total_length - rows_per_call)
|
88 |
+
url = f"https://datasets-server.huggingface.co/rows?dataset={hub_id}&config={config}&split={split}&offset={offset}&length={rows_per_call}"
|
89 |
+
response = client.get(url)
|
90 |
+
|
91 |
+
if response.status_code == 200:
|
92 |
+
data = response.json()
|
93 |
+
batch_rows = data.get("rows")
|
94 |
+
rows.extend(batch_rows)
|
95 |
+
else:
|
96 |
+
print(f"Failed to fetch data: {response.status_code}")
|
97 |
+
print(url)
|
98 |
+
if len(rows) >= number_of_rows:
|
99 |
+
break
|
100 |
+
return [row.get("row") for row in rows]
|
101 |
+
|
102 |
+
|
103 |
+
def load_model(repo_id: str) -> fasttext.FastText._FastText:
|
104 |
+
model_path = hf_hub_download(repo_id, filename="model.bin")
|
105 |
+
return fasttext.load_model(model_path)
|
106 |
+
|
107 |
+
|
108 |
+
# def predict_language_for_rows(rows: list[dict], target_column_names: list[str] | str):
|
109 |
+
# pass
|
110 |
+
|
111 |
+
|
112 |
+
def yield_clean_rows(rows: Union[list[str], str], min_length: int = 3) -> Iterator[str]:
|
113 |
+
for row in rows:
|
114 |
+
if isinstance(row, str):
|
115 |
+
# split on lines and remove empty lines
|
116 |
+
line = row.split("\n")
|
117 |
+
for line in line:
|
118 |
+
if line:
|
119 |
+
yield line
|
120 |
+
elif isinstance(row, list):
|
121 |
+
try:
|
122 |
+
line = " ".join(row)
|
123 |
+
if len(line) < min_length:
|
124 |
+
continue
|
125 |
+
else:
|
126 |
+
yield line
|
127 |
+
except TypeError:
|
128 |
+
continue
|
129 |
+
|
130 |
+
|
131 |
+
FASTTEXT_PREFIX_LENGTH = 9 # fasttext labels are formatted like "__label__eng_Latn"
|
132 |
+
|
133 |
+
# model = load_model(DEFAULT_FAST_TEXT_MODEL)
|
134 |
+
|
135 |
+
model = fasttext.load_model(
|
136 |
+
hf_hub_download("facebook/fasttext-language-identification", "model.bin")
|
137 |
+
)
|
138 |
+
|
139 |
+
|
140 |
+
def model_predict(inputs: str, k=1) -> list[dict[str, float]]:
|
141 |
+
predictions = model.predict(inputs, k=k)
|
142 |
+
return [
|
143 |
+
{"label": label[FASTTEXT_PREFIX_LENGTH:], "score": prob}
|
144 |
+
for label, prob in zip(predictions[0], predictions[1])
|
145 |
+
]
|
146 |
+
|
147 |
+
|
148 |
+
def get_label(x):
|
149 |
+
return x.get("label")
|
150 |
+
|
151 |
+
|
152 |
+
def get_mean_score(preds):
|
153 |
+
return mean([pred.get("score") for pred in preds])
|
154 |
+
|
155 |
+
|
156 |
+
def filter_by_frequency(counts_dict: dict, threshold_percent: float = 0.2):
|
157 |
+
"""Filter a dict to include items whose value is above `threshold_percent`"""
|
158 |
+
total = sum(counts_dict.values())
|
159 |
+
threshold = total * threshold_percent
|
160 |
+
return {k for k, v in counts_dict.items() if v >= threshold}
|
161 |
+
|
162 |
+
|
163 |
+
def predict_rows(rows, target_column, language_threshold_percent=0.2):
|
164 |
+
rows = (row.get(target_column) for row in rows)
|
165 |
+
rows = (row for row in rows if row is not None)
|
166 |
+
rows = list(yield_clean_rows(rows))
|
167 |
+
predictions = [model_predict(row) for row in rows]
|
168 |
+
predictions = [pred for pred in predictions if pred is not None]
|
169 |
+
predictions = list(concat(predictions))
|
170 |
+
predictions_by_lang = groupby(get_label, predictions)
|
171 |
+
langues_counts = valmap(len, predictions_by_lang)
|
172 |
+
keys_to_keep = filter_by_frequency(
|
173 |
+
langues_counts, threshold_percent=language_threshold_percent
|
174 |
+
)
|
175 |
+
filtered_dict = {k: v for k, v in predictions_by_lang.items() if k in keys_to_keep}
|
176 |
+
return {
|
177 |
+
"predictions": dict(valmap(get_mean_score, filtered_dict)),
|
178 |
+
"pred": predictions,
|
179 |
+
}
|
180 |
+
|
181 |
+
|
182 |
+
def predict_language(
|
183 |
+
hub_id: str,
|
184 |
+
config: str | None = None,
|
185 |
+
split: str | None = None,
|
186 |
+
max_request_calls: int = 10,
|
187 |
+
):
|
188 |
+
is_valid = datasets_server_valid_rows(hub_id)
|
189 |
+
if not is_valid:
|
190 |
+
gr.Error(f"Dataset {hub_id} is not accessible via the datasets server.")
|
191 |
+
if not config:
|
192 |
+
config, split = get_first_config_and_split_name(hub_id)
|
193 |
+
info = get_dataset_info(hub_id, config)
|
194 |
+
if info is None:
|
195 |
+
gr.Error(f"Dataset {hub_id} is not accessible via the datasets server.")
|
196 |
+
if dataset_info := info.get("dataset_info"):
|
197 |
+
total_rows_for_split = dataset_info.get("splits").get(split).get("num_examples")
|
198 |
+
features = dataset_info.get("features")
|
199 |
+
column_names = set(features.keys())
|
200 |
+
logger.info(f"Column names: {column_names}")
|
201 |
+
if not set(column_names).intersection(TARGET_COLUMN_NAMES):
|
202 |
+
raise gr.Error(
|
203 |
+
f"Dataset {hub_id} does not contain any of the target columns {TARGET_COLUMN_NAMES}"
|
204 |
+
)
|
205 |
+
for column in TARGET_COLUMN_NAMES:
|
206 |
+
if column in column_names:
|
207 |
+
target_column = column
|
208 |
+
logger.info(f"Using column {target_column} for language detection")
|
209 |
+
break
|
210 |
+
random_rows = get_random_rows(
|
211 |
+
hub_id, total_rows_for_split, 1000, max_request_calls, config, split
|
212 |
+
)
|
213 |
+
logger.info(f"Predicting language for {len(random_rows)} rows")
|
214 |
+
return predict_rows(random_rows, target_column)
|
215 |
+
|
216 |
+
|
217 |
+
interface = gr.Interface(predict_language, inputs="text", outputs="json")
|
218 |
+
interface.queue()
|
219 |
+
interface.launch()
|