Spaces:
Runtime error
Runtime error
Commit
•
e901392
1
Parent(s):
943dac2
chore: Add data_loader.py for dataset loading and processing
Browse files- data_loader.py +146 -0
data_loader.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from datetime import datetime
|
3 |
+
|
4 |
+
from dotenv import load_dotenv
|
5 |
+
from httpx import Client, AsyncClient
|
6 |
+
from huggingface_hub import HfApi
|
7 |
+
from huggingface_hub.utils import logging
|
8 |
+
from tqdm.auto import tqdm
|
9 |
+
from typing import Any, Dict, List
|
10 |
+
import pandas as pd
|
11 |
+
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
15 |
+
assert HF_TOKEN is not None, "You need to set HF_TOKEN in your environment variables"
|
16 |
+
USER_AGENT = os.getenv("USER_AGENT")
|
17 |
+
assert (
|
18 |
+
USER_AGENT is not None
|
19 |
+
), "You need to set USER_AGENT in your environment variables"
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
headers = {
|
23 |
+
"authorization": f"Bearer ${HF_TOKEN}",
|
24 |
+
"user-agent": USER_AGENT,
|
25 |
+
}
|
26 |
+
client = Client(headers=headers)
|
27 |
+
async_client = AsyncClient(headers=headers)
|
28 |
+
api = HfApi(token=HF_TOKEN)
|
29 |
+
|
30 |
+
|
31 |
+
def has_card_data(dataset):
|
32 |
+
return hasattr(dataset, "card_data")
|
33 |
+
|
34 |
+
|
35 |
+
def check_dataset_has_dataset_info(dataset):
|
36 |
+
return bool(
|
37 |
+
has_card_data(dataset)
|
38 |
+
and hasattr(dataset.card_data, "dataset_info")
|
39 |
+
and dataset.card_data.dataset_info is not None
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
def parse_single_config_dataset(data):
|
44 |
+
config_name = data.get("config_name", "default")
|
45 |
+
features = data.get("features", [])
|
46 |
+
column_names = [feature.get("name") for feature in features]
|
47 |
+
return {
|
48 |
+
"config_name": config_name,
|
49 |
+
"column_names": column_names,
|
50 |
+
"features": features,
|
51 |
+
}
|
52 |
+
|
53 |
+
|
54 |
+
def parse_multiple_config_dataset(data: List[Dict[str, Any]]):
|
55 |
+
return [parse_single_config_dataset(d) for d in data]
|
56 |
+
|
57 |
+
|
58 |
+
def parse_dataset(dataset):
|
59 |
+
hub_id = dataset.id
|
60 |
+
likes = dataset.likes
|
61 |
+
downloads = dataset.downloads
|
62 |
+
tags = dataset.tags
|
63 |
+
created_at = dataset.created_at
|
64 |
+
last_modified = dataset.last_modified
|
65 |
+
license = dataset.card_data.license
|
66 |
+
language = dataset.card_data.language
|
67 |
+
return {
|
68 |
+
"hub_id": hub_id,
|
69 |
+
"likes": likes,
|
70 |
+
"downloads": downloads,
|
71 |
+
"tags": tags,
|
72 |
+
"created_at": created_at,
|
73 |
+
"last_modified": last_modified,
|
74 |
+
"license": license,
|
75 |
+
"language": language,
|
76 |
+
}
|
77 |
+
|
78 |
+
|
79 |
+
def parsed_column_info(dataset_info):
|
80 |
+
if isinstance(dataset_info, dict):
|
81 |
+
return [parse_single_config_dataset(dataset_info)]
|
82 |
+
elif isinstance(dataset_info, list):
|
83 |
+
return parse_multiple_config_dataset(dataset_info)
|
84 |
+
return None
|
85 |
+
|
86 |
+
|
87 |
+
def ensure_list_of_strings(value):
|
88 |
+
if value is None:
|
89 |
+
return []
|
90 |
+
if isinstance(value, list):
|
91 |
+
return [str(item) for item in value]
|
92 |
+
return [str(value)]
|
93 |
+
|
94 |
+
|
95 |
+
def refresh_data() -> List[Dict[str, Any]]:
|
96 |
+
# current date as string
|
97 |
+
now = datetime.now()
|
98 |
+
# check if a file for the current date exists
|
99 |
+
if os.path.exists(f"datasets_{now.strftime('%Y-%m-%d')}.parquet"):
|
100 |
+
df = pd.read_parquet(f"datasets_{now.strftime('%Y-%m-%d')}.parquet")
|
101 |
+
return df.to_dict(orient="records")
|
102 |
+
|
103 |
+
# List all datasets
|
104 |
+
datasets = list(api.list_datasets(limit=None, full=True))
|
105 |
+
|
106 |
+
# Filter datasets with dataset info
|
107 |
+
datasets = [
|
108 |
+
dataset for dataset in tqdm(datasets) if check_dataset_has_dataset_info(dataset)
|
109 |
+
]
|
110 |
+
|
111 |
+
parsed_datasets = []
|
112 |
+
for dataset in tqdm(datasets):
|
113 |
+
try:
|
114 |
+
datasetinfo = parse_dataset(dataset)
|
115 |
+
column_info = parsed_column_info(dataset.card_data.dataset_info)
|
116 |
+
parsed_datasets.extend({**datasetinfo, **info} for info in column_info)
|
117 |
+
except Exception as e:
|
118 |
+
print(f"Error processing dataset {dataset.id}: {e}")
|
119 |
+
continue
|
120 |
+
|
121 |
+
# Convert to DataFrame
|
122 |
+
df = pd.DataFrame(parsed_datasets)
|
123 |
+
|
124 |
+
# Ensure 'license', 'tags', and 'language' are lists of strings
|
125 |
+
df["license"] = df["license"].apply(ensure_list_of_strings)
|
126 |
+
df["tags"] = df["tags"].apply(ensure_list_of_strings)
|
127 |
+
df["language"] = df["language"].apply(ensure_list_of_strings)
|
128 |
+
|
129 |
+
# Convert 'features' column to string
|
130 |
+
df["features"] = df["features"].apply(lambda x: str(x) if x is not None else None)
|
131 |
+
df = df.astype({"hub_id": "string", "config_name": "string"})
|
132 |
+
|
133 |
+
# save to parquet file with current date
|
134 |
+
df.to_parquet(f"datasets_{now.strftime('%Y-%m-%d')}.parquet")
|
135 |
+
|
136 |
+
# save to JSON file with current date
|
137 |
+
df.to_json(
|
138 |
+
f"datasets_{now.strftime('%Y-%m-%d')}.json", orient="records", lines=True
|
139 |
+
)
|
140 |
+
|
141 |
+
# return a list of dictionaries
|
142 |
+
return df.to_dict(orient="records")
|
143 |
+
|
144 |
+
|
145 |
+
if __name__ == "__main__":
|
146 |
+
refresh_data()
|