davanstrien's picture
davanstrien HF staff
refactor: Remove unnecessary uvicorn import and commented code in main.py
e6064e2
raw
history blame
6.05 kB
import json
import logging
import sqlite3
from contextlib import asynccontextmanager
from typing import List
import numpy as np
from fastapi import FastAPI, HTTPException, Query
from pandas import Timestamp
from pydantic import BaseModel
from starlette.responses import RedirectResponse
from data_loader import refresh_data
logger = logging.getLogger(__name__)
def get_db_connection():
conn = sqlite3.connect("datasets.db")
conn.row_factory = sqlite3.Row
return conn
def setup_database():
conn = get_db_connection()
c = conn.cursor()
c.execute(
"""CREATE TABLE IF NOT EXISTS datasets
(hub_id TEXT PRIMARY KEY,
likes INTEGER,
downloads INTEGER,
tags TEXT,
created_at INTEGER,
last_modified INTEGER,
license TEXT,
language TEXT,
config_name TEXT,
column_names TEXT,
features TEXT)"""
)
c.execute("CREATE INDEX IF NOT EXISTS idx_column_names ON datasets (column_names)")
conn.commit()
conn.close()
def serialize_numpy(obj):
if isinstance(obj, np.ndarray):
return obj.tolist()
if isinstance(obj, np.integer):
return int(obj)
if isinstance(obj, np.floating):
return float(obj)
if isinstance(obj, Timestamp):
return int(obj.timestamp())
logger.error(f"Object of type {type(obj)} is not JSON serializable")
raise TypeError(f"Object of type {type(obj)} is not JSON serializable")
def insert_data(conn, data):
c = conn.cursor()
created_at = data.get("created_at", 0)
if isinstance(created_at, Timestamp):
created_at = int(created_at.timestamp())
last_modified = data.get("last_modified", 0)
if isinstance(last_modified, Timestamp):
last_modified = int(last_modified.timestamp())
c.execute(
"""
INSERT OR REPLACE INTO datasets
(hub_id, likes, downloads, tags, created_at, last_modified, license, language, config_name, column_names, features)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?)
""",
(
data["hub_id"],
data.get("likes", 0),
data.get("downloads", 0),
json.dumps(data.get("tags", []), default=serialize_numpy),
created_at,
last_modified,
json.dumps(data.get("license", []), default=serialize_numpy),
json.dumps(data.get("language", []), default=serialize_numpy),
data.get("config_name", ""),
json.dumps(data.get("column_names", []), default=serialize_numpy),
json.dumps(data.get("features", []), default=serialize_numpy),
),
)
conn.commit()
@asynccontextmanager
async def lifespan(app: FastAPI):
# Startup: Load data into the database
setup_database()
logger.info("Creating database connection")
conn = get_db_connection()
logger.info("Refreshing data")
datasets = refresh_data()
for data in datasets:
insert_data(conn, data)
conn.close()
logger.info("Data refreshed")
yield
# Shutdown: You can add any cleanup operations here if needed
# For example, closing database connections, clearing caches, etc.
app = FastAPI(lifespan=lifespan)
@app.get("/", include_in_schema=False)
def root():
return RedirectResponse(url="/docs")
class SearchResponse(BaseModel):
total: int
page: int
page_size: int
results: List[dict]
@app.get("/search", response_model=SearchResponse)
async def search_datasets(
columns: List[str] = Query(...),
match_all: bool = Query(False),
page: int = Query(1, ge=1),
page_size: int = Query(10, ge=1, le=1000),
):
offset = (page - 1) * page_size
conn = get_db_connection()
c = conn.cursor()
try:
if match_all:
query = """
SELECT COUNT(*) as total FROM datasets
WHERE (SELECT COUNT(*) FROM json_each(column_names)
WHERE value IN ({})) = ?
""".format(",".join("?" * len(columns)))
c.execute(query, (*columns, len(columns)))
else:
query = """
SELECT COUNT(*) as total FROM datasets
WHERE EXISTS (
SELECT 1 FROM json_each(column_names)
WHERE value IN ({})
)
""".format(",".join("?" * len(columns)))
c.execute(query, columns)
total = c.fetchone()["total"]
if match_all:
query = """
SELECT * FROM datasets
WHERE (SELECT COUNT(*) FROM json_each(column_names)
WHERE value IN ({})) = ?
LIMIT ? OFFSET ?
""".format(",".join("?" * len(columns)))
c.execute(query, (*columns, len(columns), page_size, offset))
else:
query = """
SELECT * FROM datasets
WHERE EXISTS (
SELECT 1 FROM json_each(column_names)
WHERE value IN ({})
)
LIMIT ? OFFSET ?
""".format(",".join("?" * len(columns)))
c.execute(query, (*columns, page_size, offset))
results = [dict(row) for row in c.fetchall()]
for result in results:
result["tags"] = json.loads(result["tags"])
result["license"] = json.loads(result["license"])
result["language"] = json.loads(result["language"])
result["column_names"] = json.loads(result["column_names"])
result["features"] = json.loads(result["features"])
return SearchResponse(
total=total, page=page, page_size=page_size, results=results
)
except sqlite3.Error as e:
logger.error(f"Database error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Database error: {str(e)}") from e
finally:
conn.close()
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)