davanstrien's picture
davanstrien HF staff
cache main lookup
6bad7e3
raw
history blame
5.43 kB
import os
import platform
import re
from collections import defaultdict
import gradio as gr
from cachetools import TTLCache, cached
from cytoolz import groupby
from huggingface_hub import CollectionItem, get_collection, list_datasets, list_models
from tqdm.auto import tqdm
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
is_macos = platform.system() == "Darwin"
LIMIT = 1000 if is_macos else None # limit for local dev because slooow internet
CACHE_TIME = 60 * 5 # 5 minutes
@cached(cache=TTLCache(maxsize=100, ttl=CACHE_TIME))
def get_models():
return list(tqdm(iter(list_models(full=True, limit=LIMIT))))
@cached(cache=TTLCache(maxsize=100, ttl=CACHE_TIME))
def get_datasets():
return list(tqdm(iter(list_datasets(full=True, limit=LIMIT))))
get_models() # warm up the cache
get_datasets() # warm up the cache
def check_for_arxiv_id(model):
return [tag for tag in model.tags if "arxiv" in tag] if model.tags else False
def extract_arxiv_id(input_string: str) -> str:
pattern = re.compile(r"\barxiv:(\d+\.\d+)\b")
match = pattern.search(input_string)
return match[1] if match else None
@cached(cache=TTLCache(maxsize=100, ttl=CACHE_TIME))
def create_model_to_arxiv_id_dict():
models = get_models()
model_to_arxiv_id = {}
for model in models:
if arxiv_papers := check_for_arxiv_id(model):
clean_arxiv_ids = []
for paper in arxiv_papers:
if arxiv_id := extract_arxiv_id(paper):
clean_arxiv_ids.append(arxiv_id)
model_to_arxiv_id[model.modelId] = clean_arxiv_ids
return model_to_arxiv_id
@cached(cache=TTLCache(maxsize=100, ttl=CACHE_TIME))
def create_dataset_to_arxiv_id_dict():
datasets = get_datasets()
dataset_to_arxiv_id = {}
for dataset in datasets:
if arxiv_papers := check_for_arxiv_id(dataset):
clean_arxiv_ids = []
for paper in arxiv_papers:
if arxiv_id := extract_arxiv_id(paper):
clean_arxiv_ids.append(arxiv_id)
dataset_to_arxiv_id[dataset.id] = clean_arxiv_ids
return dataset_to_arxiv_id
def get_collection_type(collection_item: CollectionItem):
try:
return f"{collection_item.item_type}s"
except AttributeError:
return None
def group_collection_items(collection_slug: str):
collection = get_collection(collection_slug)
items = collection.items
return groupby(get_collection_type, items)
@cached(cache=TTLCache(maxsize=1000, ttl=CACHE_TIME))
def get_papers_for_collection(collection_slug: str):
dataset_to_arxiv_id = create_dataset_to_arxiv_id_dict()
models_to_arxiv_id = create_model_to_arxiv_id_dict()
collection = group_collection_items(collection_slug)
collection_datasets = collection.get("datasets", None)
collection_models = collection.get("models", None)
papers = collection.get("papers", None)
dataset_papers = defaultdict(dict)
model_papers = defaultdict(dict)
collection_papers = defaultdict(dict)
if collection_datasets is not None:
for dataset in collection_datasets:
if arxiv_ids := dataset_to_arxiv_id.get(dataset.item_id, None):
data = {
"arxiv_ids": arxiv_ids,
"hub_paper_links": [
f"https://huggingface.co/papers/{arxiv_id}"
for arxiv_id in arxiv_ids
],
}
dataset_papers[dataset.item_id] = data
if collection_models is not None:
for model in collection.get("models", []):
if arxiv_ids := models_to_arxiv_id.get(model.item_id, None):
data = {
"arxiv_ids": arxiv_ids,
"hub_paper_links": [
f"https://huggingface.co/papers/{arxiv_id}"
for arxiv_id in arxiv_ids
],
}
model_papers[model.item_id] = data
if papers is not None:
for paper in papers:
data = {
"arxiv_ids": paper.item_id,
"hub_paper_links": [f"https://huggingface.co/papers/{paper.item_id}"],
}
collection_papers[paper.item_id] = data
if not dataset_papers:
dataset_papers = None
if not model_papers:
model_papers = None
if not collection_papers:
collection_papers = None
return {
"dataset papers": dataset_papers,
"model papers": model_papers,
"papers": collection_papers,
}
placeholder_url = "HF-IA-archiving/models-to-archive-65006a7fdadb8c628f33aac9"
slug_input = gr.Textbox(
placeholder=placeholder_url, interactive=True, label="Collection slug", max_lines=1
)
description = (
"Enter a Collection slug to get the arXiv IDs and Hugging Face Paper links for"
" papers associated with models and datasets in the collection. If the collection"
" includes papers the arXiv IDs and Hugging Face Paper links will be returned for"
" those papers as well."
)
examples = [
placeholder_url,
"davanstrien/historic-language-modeling-64f99e243188ade79d7ad74b",
]
gr.Interface(
get_papers_for_collection,
slug_input,
"json",
title="πŸ“„πŸ”—: Extract linked papers from a Hugging Face Collection",
description=description,
examples=examples,
cache_examples=True,
).launch()