GenFBDD / datasets /process_mols.py
libokj's picture
Minify
c17cba8
raw
history blame
23.3 kB
import copy
import warnings
from pathlib import Path
import numpy as np
import torch
from Bio.PDB import PDBParser
from rdkit import Chem
from rdkit.Chem.rdchem import BondType as BT
from rdkit.Chem import AllChem, GetPeriodicTable, RemoveHs
from rdkit.Geometry import Point3D
from torch import cdist
from torch_cluster import knn_graph
import prody as pr
import torch.nn.functional as F
from datasets.conformer_matching import get_torsion_angles, optimize_rotatable_bonds
from datasets.constants import aa_short2long, atom_order, three_to_one
from datasets.parse_chi import get_chi_angles, get_coords, aa_idx2aa_short, get_onehot_sequence
from utils.torsion import get_transformation_mask
from utils.logging_utils import get_logger
logger = get_logger()
periodic_table = GetPeriodicTable()
allowable_features = {
'possible_atomic_num_list': list(range(1, 119)) + ['misc'],
'possible_chirality_list': [
'CHI_UNSPECIFIED',
'CHI_TETRAHEDRAL_CW',
'CHI_TETRAHEDRAL_CCW',
'CHI_OTHER'
],
'possible_degree_list': [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 'misc'],
'possible_numring_list': [0, 1, 2, 3, 4, 5, 6, 'misc'],
'possible_implicit_valence_list': [0, 1, 2, 3, 4, 5, 6, 'misc'],
'possible_formal_charge_list': [-5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 'misc'],
'possible_numH_list': [0, 1, 2, 3, 4, 5, 6, 7, 8, 'misc'],
'possible_number_radical_e_list': [0, 1, 2, 3, 4, 'misc'],
'possible_hybridization_list': [
'SP', 'SP2', 'SP3', 'SP3D', 'SP3D2', 'misc'
],
'possible_is_aromatic_list': [False, True],
'possible_is_in_ring3_list': [False, True],
'possible_is_in_ring4_list': [False, True],
'possible_is_in_ring5_list': [False, True],
'possible_is_in_ring6_list': [False, True],
'possible_is_in_ring7_list': [False, True],
'possible_is_in_ring8_list': [False, True],
'possible_amino_acids': ['ALA', 'ARG', 'ASN', 'ASP', 'CYS', 'GLN', 'GLU', 'GLY', 'HIS', 'ILE', 'LEU', 'LYS', 'MET',
'PHE', 'PRO', 'SER', 'THR', 'TRP', 'TYR', 'VAL', 'HIP', 'HIE', 'TPO', 'HID', 'LEV', 'MEU',
'PTR', 'GLV', 'CYT', 'SEP', 'HIZ', 'CYM', 'GLM', 'ASQ', 'TYS', 'CYX', 'GLZ', 'misc'],
'possible_atom_type_2': ['C*', 'CA', 'CB', 'CD', 'CE', 'CG', 'CH', 'CZ', 'N*', 'ND', 'NE', 'NH', 'NZ', 'O*', 'OD',
'OE', 'OG', 'OH', 'OX', 'S*', 'SD', 'SG', 'misc'],
'possible_atom_type_3': ['C', 'CA', 'CB', 'CD', 'CD1', 'CD2', 'CE', 'CE1', 'CE2', 'CE3', 'CG', 'CG1', 'CG2', 'CH2',
'CZ', 'CZ2', 'CZ3', 'N', 'ND1', 'ND2', 'NE', 'NE1', 'NE2', 'NH1', 'NH2', 'NZ', 'O', 'OD1',
'OD2', 'OE1', 'OE2', 'OG', 'OG1', 'OH', 'OXT', 'SD', 'SG', 'misc'],
}
bonds = {BT.SINGLE: 0, BT.DOUBLE: 1, BT.TRIPLE: 2, BT.AROMATIC: 3}
lig_feature_dims = (list(map(len, [
allowable_features['possible_atomic_num_list'],
allowable_features['possible_chirality_list'],
allowable_features['possible_degree_list'],
allowable_features['possible_formal_charge_list'],
allowable_features['possible_implicit_valence_list'],
allowable_features['possible_numH_list'],
allowable_features['possible_number_radical_e_list'],
allowable_features['possible_hybridization_list'],
allowable_features['possible_is_aromatic_list'],
allowable_features['possible_numring_list'],
allowable_features['possible_is_in_ring3_list'],
allowable_features['possible_is_in_ring4_list'],
allowable_features['possible_is_in_ring5_list'],
allowable_features['possible_is_in_ring6_list'],
allowable_features['possible_is_in_ring7_list'],
allowable_features['possible_is_in_ring8_list'],
])), 0) # number of scalar features
rec_atom_feature_dims = (list(map(len, [
allowable_features['possible_amino_acids'],
allowable_features['possible_atomic_num_list'],
allowable_features['possible_atom_type_2'],
allowable_features['possible_atom_type_3'],
])), 0)
rec_residue_feature_dims = (list(map(len, [
allowable_features['possible_amino_acids']
])), 0)
def lig_atom_featurizer(mol):
ringinfo = mol.GetRingInfo()
atom_features_list = []
for idx, atom in enumerate(mol.GetAtoms()):
chiral_tag = str(atom.GetChiralTag())
if chiral_tag in ['CHI_SQUAREPLANAR', 'CHI_TRIGONALBIPYRAMIDAL', 'CHI_OCTAHEDRAL']:
chiral_tag = 'CHI_OTHER'
atom_features_list.append([
safe_index(allowable_features['possible_atomic_num_list'], atom.GetAtomicNum()),
allowable_features['possible_chirality_list'].index(str(chiral_tag)),
safe_index(allowable_features['possible_degree_list'], atom.GetTotalDegree()),
safe_index(allowable_features['possible_formal_charge_list'], atom.GetFormalCharge()),
safe_index(allowable_features['possible_implicit_valence_list'], atom.GetImplicitValence()),
safe_index(allowable_features['possible_numH_list'], atom.GetTotalNumHs()),
safe_index(allowable_features['possible_number_radical_e_list'], atom.GetNumRadicalElectrons()),
safe_index(allowable_features['possible_hybridization_list'], str(atom.GetHybridization())),
allowable_features['possible_is_aromatic_list'].index(atom.GetIsAromatic()),
safe_index(allowable_features['possible_numring_list'], ringinfo.NumAtomRings(idx)),
allowable_features['possible_is_in_ring3_list'].index(ringinfo.IsAtomInRingOfSize(idx, 3)),
allowable_features['possible_is_in_ring4_list'].index(ringinfo.IsAtomInRingOfSize(idx, 4)),
allowable_features['possible_is_in_ring5_list'].index(ringinfo.IsAtomInRingOfSize(idx, 5)),
allowable_features['possible_is_in_ring6_list'].index(ringinfo.IsAtomInRingOfSize(idx, 6)),
allowable_features['possible_is_in_ring7_list'].index(ringinfo.IsAtomInRingOfSize(idx, 7)),
allowable_features['possible_is_in_ring8_list'].index(ringinfo.IsAtomInRingOfSize(idx, 8)),
#g_charge if not np.isnan(g_charge) and not np.isinf(g_charge) else 0.
])
return torch.tensor(atom_features_list)
def safe_index(l, e):
""" Return index of element e in list l. If e is not present, return the last index """
try:
return l.index(e)
except:
return len(l) - 1
def moad_extract_receptor_structure(path, complex_graph, neighbor_cutoff=20, max_neighbors=None, sequences_to_embeddings=None,
knn_only_graph=False, lm_embeddings=None, all_atoms=False, atom_cutoff=None, atom_max_neighbors=None):
# load the entire pdb file
pdb = pr.parsePDB(str(path))
seq = pdb.ca.getSequence()
coords = get_coords(pdb)
one_hot = get_onehot_sequence(seq)
chain_ids = np.zeros(len(one_hot))
res_chain_ids = pdb.ca.getChids()
res_seg_ids = pdb.ca.getSegnames()
res_chain_ids = np.asarray([s + c for s, c in zip(res_seg_ids, res_chain_ids)])
ids = np.unique(res_chain_ids)
sequences = []
lm_embeddings = lm_embeddings if sequences_to_embeddings is None else []
for i, id in enumerate(ids):
chain_ids[res_chain_ids == id] = i
s = np.argmax(one_hot[res_chain_ids == id], axis=1)
s = ''.join([aa_idx2aa_short[aa_idx] for aa_idx in s])
sequences.append(s)
if sequences_to_embeddings is not None:
lm_embeddings.append(sequences_to_embeddings[s])
complex_graph['receptor'].sequence = sequences
complex_graph['receptor'].chain_ids = torch.from_numpy(np.asarray(chain_ids)).long()
new_extract_receptor_structure(seq, coords, complex_graph, neighbor_cutoff=neighbor_cutoff, max_neighbors=max_neighbors,
lm_embeddings=lm_embeddings, knn_only_graph=knn_only_graph, all_atoms=all_atoms,
atom_cutoff=atom_cutoff, atom_max_neighbors=atom_max_neighbors)
def new_extract_receptor_structure(seq, all_coords, complex_graph, neighbor_cutoff=20, max_neighbors=None, lm_embeddings=None,
knn_only_graph=False, all_atoms=False, atom_cutoff=None, atom_max_neighbors=None):
chi_angles, one_hot = get_chi_angles(all_coords, seq, return_onehot=True)
n_rel_pos, c_rel_pos = all_coords[:, 0, :] - all_coords[:, 1, :], all_coords[:, 2, :] - all_coords[:, 1, :]
side_chain_vecs = torch.from_numpy(np.concatenate([chi_angles / 360, n_rel_pos, c_rel_pos], axis=1))
# Build the k-NN graph
coords = torch.tensor(all_coords[:, 1, :], dtype=torch.float)
if len(coords) > 3000:
raise ValueError(f'The receptor is too large {len(coords)}')
if knn_only_graph:
edge_index = knn_graph(coords, k=max_neighbors if max_neighbors else 32)
else:
distances = cdist(coords, coords)
src_list = []
dst_list = []
for i in range(len(coords)):
dst = list(np.where(distances[i, :] < neighbor_cutoff)[0])
dst.remove(i)
max_neighbors = max_neighbors if max_neighbors else 1000
if max_neighbors != None and len(dst) > max_neighbors:
dst = list(np.argsort(distances[i, :]))[1: max_neighbors + 1]
if len(dst) == 0:
dst = list(np.argsort(distances[i, :]))[1:2] # choose second because first is i itself
print(
f'The cutoff {neighbor_cutoff} was too small for one atom such that it had no neighbors. '
f'So we connected it to the closest other atom')
assert i not in dst
src = [i] * len(dst)
src_list.extend(src)
dst_list.extend(dst)
edge_index = torch.from_numpy(np.asarray([dst_list, src_list]))
res_names_list = [aa_short2long[seq[i]] if seq[i] in aa_short2long else 'misc' for i in range(len(seq))]
feature_list = [[safe_index(allowable_features['possible_amino_acids'], res)] for res in res_names_list]
node_feat = torch.tensor(feature_list, dtype=torch.float32)
lm_embeddings = torch.tensor(np.concatenate(lm_embeddings, axis=0)) if lm_embeddings is not None else None
complex_graph['receptor'].x = torch.cat([node_feat, lm_embeddings], axis=1) if lm_embeddings is not None else node_feat
complex_graph['receptor'].pos = coords
complex_graph['receptor'].side_chain_vecs = side_chain_vecs.float()
complex_graph['receptor', 'rec_contact', 'receptor'].edge_index = edge_index
if all_atoms:
atom_coords = all_coords.reshape(-1, 3)
atom_coords = torch.from_numpy(atom_coords[~np.any(np.isnan(atom_coords), axis=1)]).float()
if knn_only_graph:
atoms_edge_index = knn_graph(atom_coords, k=atom_max_neighbors if atom_max_neighbors else 1000)
else:
atoms_distances = cdist(atom_coords, atom_coords)
atom_src_list = []
atom_dst_list = []
for i in range(len(atom_coords)):
dst = list(np.where(atoms_distances[i, :] < atom_cutoff)[0])
dst.remove(i)
max_neighbors = atom_max_neighbors if atom_max_neighbors else 1000
if max_neighbors != None and len(dst) > max_neighbors:
dst = list(np.argsort(atoms_distances[i, :]))[1: max_neighbors + 1]
if len(dst) == 0:
dst = list(np.argsort(atoms_distances[i, :]))[1:2] # choose second because first is i itself
print(
f'The atom_cutoff {atom_cutoff} was too small for one atom such that it had no neighbors. '
f'So we connected it to the closest other atom')
assert i not in dst
src = [i] * len(dst)
atom_src_list.extend(src)
atom_dst_list.extend(dst)
atoms_edge_index = torch.from_numpy(np.asarray([atom_dst_list, atom_src_list]))
feats = [get_moad_atom_feats(res, all_coords[i]) for i, res in enumerate(seq)]
atom_feat = torch.from_numpy(np.concatenate(feats, axis=0)).float()
c_alpha_idx = np.concatenate([np.zeros(len(f)) + i for i, f in enumerate(feats)])
np_array = np.stack([np.arange(len(atom_feat)), c_alpha_idx])
atom_res_edge_index = torch.from_numpy(np_array).long()
complex_graph['atom'].x = atom_feat
complex_graph['atom'].pos = atom_coords
assert len(complex_graph['atom'].x) == len(complex_graph['atom'].pos)
complex_graph['atom', 'atom_contact', 'atom'].edge_index = atoms_edge_index
complex_graph['atom', 'atom_rec_contact', 'receptor'].edge_index = atom_res_edge_index
return
def get_moad_atom_feats(res, coords):
feats = []
res_long = aa_short2long[res]
res_order = atom_order[res]
for i, c in enumerate(coords):
if np.any(np.isnan(c)):
continue
atom_feats = []
if res == '-':
atom_feats = [safe_index(allowable_features['possible_amino_acids'], 'misc'),
safe_index(allowable_features['possible_atomic_num_list'], 'misc'),
safe_index(allowable_features['possible_atom_type_2'], 'misc'),
safe_index(allowable_features['possible_atom_type_3'], 'misc')]
else:
atom_feats.append(safe_index(allowable_features['possible_amino_acids'], res_long))
if i >= len(res_order):
atom_feats.extend([safe_index(allowable_features['possible_atomic_num_list'], 'misc'),
safe_index(allowable_features['possible_atom_type_2'], 'misc'),
safe_index(allowable_features['possible_atom_type_3'], 'misc')])
else:
atom_name = res_order[i]
try:
atomic_num = periodic_table.GetAtomicNumber(atom_name[:1])
except:
print("element", res_order[i][:1], 'not found')
atomic_num = -1
atom_feats.extend([safe_index(allowable_features['possible_atomic_num_list'], atomic_num),
safe_index(allowable_features['possible_atom_type_2'], (atom_name + '*')[:2]),
safe_index(allowable_features['possible_atom_type_3'], atom_name)])
feats.append(atom_feats)
feats = np.asarray(feats)
return feats
def get_lig_graph(mol, complex_graph):
atom_feats = lig_atom_featurizer(mol)
row, col, edge_type = [], [], []
for bond in mol.GetBonds():
start, end = bond.GetBeginAtomIdx(), bond.GetEndAtomIdx()
row += [start, end]
col += [end, start]
edge_type += 2 * [bonds[bond.GetBondType()]] if bond.GetBondType() != BT.UNSPECIFIED else [0, 0]
edge_index = torch.tensor([row, col], dtype=torch.long)
edge_type = torch.tensor(edge_type, dtype=torch.long)
edge_attr = F.one_hot(edge_type, num_classes=len(bonds)).to(torch.float)
complex_graph['ligand'].x = atom_feats
complex_graph['ligand', 'lig_bond', 'ligand'].edge_index = edge_index
complex_graph['ligand', 'lig_bond', 'ligand'].edge_attr = edge_attr
if mol.GetNumConformers() > 0:
lig_coords = torch.from_numpy(mol.GetConformer().GetPositions()).float()
complex_graph['ligand'].pos = lig_coords
return
def generate_conformer(mol):
ps = AllChem.ETKDGv2()
failures, id = 0, -1
while failures < 3 and id == -1:
if failures > 0:
logger.debug(f'rdkit coords could not be generated. trying again {failures}.')
id = AllChem.EmbedMolecule(mol, ps)
failures += 1
if id == -1:
logger.info('rdkit coords could not be generated without using random coords. using random coords now.')
ps.useRandomCoords = True
AllChem.EmbedMolecule(mol, ps)
AllChem.MMFFOptimizeMolecule(mol, confId=0)
return True
#else:
# AllChem.MMFFOptimizeMolecule(mol, confId=0)
return False
def get_lig_graph_with_matching(mol_, complex_graph, popsize, maxiter, matching, keep_original, num_conformers, remove_hs, tries=10, skip_matching=False):
if matching:
mol_maybe_noh = copy.deepcopy(mol_)
if remove_hs:
mol_maybe_noh = RemoveHs(mol_maybe_noh, sanitize=True)
mol_maybe_noh = AllChem.RemoveAllHs(mol_maybe_noh)
if keep_original:
positions = []
for conf in mol_maybe_noh.GetConformers():
positions.append(conf.GetPositions())
complex_graph['ligand'].orig_pos = np.asarray(positions) if len(positions) > 1 else positions[0]
# rotatable_bonds = get_torsion_angles(mol_maybe_noh)
_tmp = copy.deepcopy(mol_)
if remove_hs:
_tmp = RemoveHs(_tmp, sanitize=True)
_tmp = AllChem.RemoveAllHs(_tmp)
rotatable_bonds = get_torsion_angles(_tmp)
for i in range(num_conformers):
mols, rmsds = [], []
for _ in range(tries):
mol_rdkit = copy.deepcopy(mol_)
mol_rdkit.RemoveAllConformers()
mol_rdkit = AllChem.AddHs(mol_rdkit)
generate_conformer(mol_rdkit)
if remove_hs:
mol_rdkit = RemoveHs(mol_rdkit, sanitize=True)
mol_rdkit = AllChem.RemoveAllHs(mol_rdkit)
mol = AllChem.RemoveAllHs(copy.deepcopy(mol_maybe_noh))
if rotatable_bonds and not skip_matching:
optimize_rotatable_bonds(mol_rdkit, mol, rotatable_bonds, popsize=popsize, maxiter=maxiter)
mol.AddConformer(mol_rdkit.GetConformer())
rms_list = []
AllChem.AlignMolConformers(mol, RMSlist=rms_list)
mol_rdkit.RemoveAllConformers()
mol_rdkit.AddConformer(mol.GetConformers()[1])
mols.append(mol_rdkit)
rmsds.append(rms_list[0])
# select molecule with lowest rmsd
#print("mean std min max", np.mean(rmsds), np.std(rmsds), np.min(rmsds), np.max(rmsds))
mol_rdkit = mols[np.argmin(rmsds)]
if i == 0:
complex_graph.rmsd_matching = min(rmsds)
get_lig_graph(mol_rdkit, complex_graph)
else:
if torch.is_tensor(complex_graph['ligand'].pos):
complex_graph['ligand'].pos = [complex_graph['ligand'].pos]
complex_graph['ligand'].pos.append(torch.from_numpy(mol_rdkit.GetConformer().GetPositions()).float())
else: # no matching
complex_graph.rmsd_matching = 0
if remove_hs: mol_ = RemoveHs(mol_)
get_lig_graph(mol_, complex_graph)
edge_mask, mask_rotate = get_transformation_mask(complex_graph)
complex_graph['ligand'].edge_mask = torch.tensor(edge_mask)
complex_graph['ligand'].mask_rotate = mask_rotate
return
def get_rec_misc_atom_feat(bio_atom=None, atom_name=None, element=None, get_misc_features=False):
if get_misc_features:
return [safe_index(allowable_features['possible_amino_acids'], 'misc'),
safe_index(allowable_features['possible_atomic_num_list'], 'misc'),
safe_index(allowable_features['possible_atom_type_2'], 'misc'),
safe_index(allowable_features['possible_atom_type_3'], 'misc')]
if atom_name is not None:
atom_name = atom_name
else:
atom_name = bio_atom.name
if element is not None:
element = element
else:
element = bio_atom.element
if element == 'CD':
element = 'C'
assert not element == ''
try:
atomic_num = periodic_table.GetAtomicNumber(element.lower().capitalize())
except:
atomic_num = -1
atom_feat = [safe_index(allowable_features['possible_amino_acids'], bio_atom.get_parent().get_resname()),
safe_index(allowable_features['possible_atomic_num_list'], atomic_num),
safe_index(allowable_features['possible_atom_type_2'], (atom_name + '*')[:2]),
safe_index(allowable_features['possible_atom_type_3'], atom_name)]
return atom_feat
def write_mol_with_coords(mol, new_coords, path):
w = Chem.SDWriter(path)
conf = mol.GetConformer()
for i in range(mol.GetNumAtoms()):
x,y,z = new_coords.astype(np.double)[i]
conf.SetAtomPosition(i,Point3D(x,y,z))
w.write(mol)
w.close()
def create_mol_with_coords(mol, new_coords, path=None):
conf = mol.GetConformer()
for i in range(mol.GetNumAtoms()):
x, y, z = new_coords[i]
conf.SetAtomPosition(i, Point3D(float(x), float(y), float(z)))
if path:
w = Chem.SDWriter(path)
w.write(mol)
w.close()
return mol
def read_molecule(ligand_description, sanitize=False, calc_charges=False, remove_hs=False, remove_confs=False):
mol = None
# Check if ligand_description is a path to a file
if Path(ligand_description).is_absolute() or len(Path(ligand_description).parts) > 1:
path = Path(ligand_description)
if path.is_file():
match path.suffix:
case '.mol':
mol = Chem.MolFromMolFile(str(path), sanitize=False, removeHs=True)
case '.mol2':
mol = Chem.MolFromMol2File(str(path), sanitize=False, removeHs=False)
case '.sdf':
supplier = Chem.SDMolSupplier(str(path), sanitize=False, removeHs=False)
mol = supplier[0]
case '.pdbqt':
with open(path) as file:
pdbqt_data = file.readlines()
pdb_block = ''
for line in pdbqt_data:
pdb_block += '{}\n'.format(line[:66])
mol = Chem.MolFromPDBBlock(pdb_block, sanitize=False, removeHs=False)
case '.pdb':
mol = Chem.MolFromPDBFile(str(path), sanitize=False, removeHs=False)
case _:
logger.warning(f'Expect the format of the molecule file to be '
f'one of .mol2, .sdf, .pdbqt and .pdb, got {ligand_description}')
else:
raise FileNotFoundError(f'File {ligand_description} not found.')
else:
mol = Chem.MolFromSmiles(ligand_description)
# No need to remove conformers if the molecule is not read from a file
remove_confs = False
if mol is not None:
try:
if sanitize or calc_charges:
Chem.SanitizeMol(mol)
if calc_charges:
# Compute Gasteiger charges on the molecule.
try:
AllChem.ComputeGasteigerCharges(mol)
except:
warnings.warn('Unable to compute charges for the molecule.')
if remove_hs:
mol = Chem.RemoveHs(mol, sanitize=sanitize)
if remove_confs:
mol.RemoveAllConformers()
except Exception as e:
# Print stacktrace
import traceback
msg = traceback.format_exc()
logger.warning(f"Failed to process molecule: {ligand_description}\n{msg}")
return None
return mol