GenFBDD / inference.py.bak
libokj's picture
Initial commit GenFBDD
9439b9b
raw
history blame
43 kB
import logging
import subprocess
import sys
from argparse import ArgumentParser, Namespace, FileType
import copy
import itertools
import os
from datetime import datetime
from pathlib import Path
from functools import partial, cache
import warnings
import yaml
from Bio.PDB import PDBParser
from sklearn.cluster import DBSCAN
from src import const
from src.datasets import (
collate_with_fragment_without_pocket_edges, get_dataloader, get_one_hot, parse_molecule, ProteinConditionedDataset
)
from src.lightning import DDPM
from src.linker_size_lightning import SizeClassifier
from src.utils import set_deterministic, FoundNaNException
from src.visualizer import save_sdf
# Ignore pandas deprecation warning around pyarrow
warnings.filterwarnings("ignore", category=DeprecationWarning,
message="(?s).*Pyarrow will become a required dependency of pandas.*")
import numpy as np
import pandas as pd
from pandarallel import pandarallel
import torch
from torch_geometric.loader import DataLoader
from Bio import SeqIO
from rdkit import RDLogger, Chem
from rdkit.Chem import RemoveAllHs
# TODO imports are a little odd, utils seems to shadow things
from utils.logging_utils import configure_logger, get_logger
from datasets.process_mols import create_mol_with_coords, read_molecule
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl, get_t_schedule
from utils.inference_utils import InferenceDataset
from utils.sampling import randomize_position, sampling
from utils.utils import get_model
from utils.visualise import PDBFile
from tqdm import tqdm
RDLogger.DisableLog('rdApp.*')
warnings.filterwarnings("ignore", category=UserWarning,
message="The TorchScript type system doesn't support instance-level annotations on"
" empty non-base types in `__init__`")
# Prody logging is very verbose by default
prody_logger = logging.getLogger(".prody")
prody_logger.setLevel(logging.ERROR)
# Pandarallel initialization
nb_workers = os.cpu_count()
progress_bar = False
if hasattr(sys, 'gettrace') and sys.gettrace() is not None: # Debug mode
nb_workers = 1
progress_bar = True
pandarallel.initialize(nb_workers=nb_workers, progress_bar=progress_bar)
def read_compound_library(file_path):
df = None
if file_path.suffix == '.csv':
df = pd.read_csv(file_path)
elif file_path.suffix == '.sdf':
supplier = Chem.SDMolSupplier(file_path, sanitize=False, removeHs=False)
# Convert to a dataframe
df = pd.DataFrame([{'X1': Chem.MolToSmiles(mol), 'ID1': mol.GetProp('_Name')} for mol in supplier])
# Use InChiKey as ID1 if None
df.loc[df['ID1'].isna(), 'ID1'] = df.loc[
df['ID1'].isna(), 'X1'
].apply(Chem.MolFromSmiles).apply(Chem.MolToInchiKey)
return df
def read_protein_library(file_path):
df = None
if file_path.suffix == '.csv':
df = pd.read_csv(file_path)
elif file_path.suffix == '.fasta':
records = list(SeqIO.parse(file_path, 'fasta'))
df = pd.DataFrame([{'X2': str(record.seq), 'ID2': record.id} for record in records])
return df
def process_fragment_library(df):
"""
SMILES strings with separators (e.g., .) represent distinct molecular entities, such as ligands, ions, or
co-crystallized molecules. Splitting them ensures that each entity is treated individually, allowing focused
analysis of their roles in binding. Single atom fragments (e.g., counterions like [I-] or [Cl-] are irrelevant in
docking and are to be removed. This filtering focuses on structurally relevant fragments.
"""
# Get subset of rows with SMILES containing separators
fragmented_rows = df['X1'].str.contains('.', regex=False)
df_fragmented = df[fragmented_rows].copy()
# Split SMILES into lists and expand
df_fragmented['X1'] = df_fragmented['X1'].str.split('.')
df_fragmented = df_fragmented.explode('X1').reset_index(drop=True)
# Append fragment index as alphabet (A, B, C... AA, AB...) to ID1 for rows with fragmented SMILES
df_fragmented['ID1'] = df_fragmented.groupby('ID1').cumcount().apply(num_to_letter_code).radd(
df_fragmented['ID1'] + '_')
df = pd.concat([df[~fragmented_rows], df_fragmented]).sort_index().reset_index(drop=True)
df['mol'] = df['X1'].apply(read_molecule, remove_confs=True)
df = df.dropna(subset=['mol'])
# # Remove fragments with no carbon atoms
# df = df[df['mol'].swifter.apply(lambda mol: any(atom.GetSymbol() == 'C' for atom in mol.GetAtoms()))]
# Remove single-atom fragments
df = df[df['mol'].apply(lambda mol: mol.GetNumAtoms() > 1)]
# Canonicalize SMILES
df['X1'] = df['mol'].apply(lambda x: Chem.MolToSmiles(x))
return df
def check_one_to_one(df, ID_column, X_column):
# Check for multiple X values for the same ID
id_to_x_conflicts = df.groupby(ID_column)[X_column].nunique()
conflicting_ids = id_to_x_conflicts[id_to_x_conflicts > 1]
# Check for multiple ID values for the same X
x_to_id_conflicts = df.groupby(X_column)[ID_column].nunique()
conflicting_xs = x_to_id_conflicts[x_to_id_conflicts > 1]
# Print conflicting mappings
if not conflicting_ids.empty:
print(f"Conflicting {ID_column} -> multiple {X_column}:")
for idx in conflicting_ids.index:
print(f"{ID_column}: {idx}, {X_column} values: {df[df[ID_column] == idx][X_column].unique()}")
if not conflicting_xs.empty:
print(f"Conflicting {X_column} -> multiple {ID_column}:")
for x in conflicting_xs.index:
print(f"{X_column}: {x}, {ID_column} values: {df[df[X_column] == x][ID_column].unique()}")
# Return whether the mappings are one-to-one
return conflicting_ids.empty and conflicting_xs.empty
def num_to_letter_code(n):
result = ''
while n >= 0:
result = chr(65 + (n % 26)) + result
n = n // 26 - 1
return result
def dock_fragments(args):
with open(Path(args.score_ckpt).parent / 'model_parameters.yml') as f:
score_model_args = Namespace(**yaml.full_load(f))
if args.confidence_ckpt is not None:
with open(Path(args.confidence_ckpt).parent / 'model_parameters.yml') as f:
confidence_args = Namespace(**yaml.full_load(f))
log.info(f"DiffFragDock will run on {device}")
docking_out_dir = Path(args.out_dir, 'docking')
docking_out_dir.mkdir(parents=True, exist_ok=True)
if args.protein_ligand_csv is not None:
csv_path = Path(args.protein_ligand_csv)
assert csv_path.is_file(), f"File {args.protein_ligand_csv} does not exist"
df = pd.read_csv(csv_path)
df = process_fragment_library(df)
else:
assert args.X1 is not None and args.X2 is not None, "Either a .csv file or `X1` and `X2` must be provided."
compound_df = pd.DataFrame(columns=['X1', 'ID1'])
if Path(args.X1).is_file():
compound_path = Path(args.X1)
if compound_path.suffix in ['.csv', '.sdf']:
compound_df[['X1', 'ID1']] = read_compound_library(compound_path)[['X1', 'ID1']]
else:
compound_df['X1'] = [compound_path]
compound_df['ID1'] = [compound_path.stem]
else:
compound_df['X1'] = [args.X1]
compound_df['ID1'] = 'compound_0'
compound_df.dropna(subset=['X1'], inplace=True)
compound_df.loc[compound_df['ID1'].isna(), 'ID1'] = compound_df.loc[compound_df['ID1'].isna(), 'X1'].apply(
lambda x: Chem.MolToInchiKey(Chem.MolFromSmiles(x))
)
protein_df = pd.DataFrame(columns=['X2', 'ID2'])
if Path(args.X2).is_file():
protein_path = Path(args.X2)
if protein_path.suffix in ['.csv', '.fasta']:
protein_df[['X2', 'ID2']] = read_protein_library(protein_path)[['X2', 'ID2']]
else:
protein_df['protein_path'] = [protein_path]
protein_df['ID2'] = [protein_path.stem]
else:
protein_df['X2'] = [args.X2]
protein_df['ID2'] = 'protein_0'
protein_df.dropna(subset=['X2'], inplace=True)
protein_df.loc[protein_df['ID2'].isna(), 'ID2'] = [
f"protein_{i}" for i in range(protein_df['ID2'].isna().sum())
]
compound_df = process_fragment_library(compound_df)
df = compound_df.merge(protein_df, how='cross')
# Identify duplicates based on 'X1' and 'X2'
duplicates = df[df.duplicated(subset=['X1', 'X2'], keep=False)]
if not duplicates.empty:
print("Duplicate rows based on columns 'X1' and 'X2':\n", duplicates[['ID1', 'X1', 'ID2', 'X2']])
print("Keeping the first occurrence of each duplicate.")
df = df.drop_duplicates(subset=['X1', 'X2'])
df['name'] = df['ID2'] + '-' + df['ID1']
df = df.replace({pd.NA: None})
# Check unique mappings between IDn and Xn
assert check_one_to_one(df, 'ID1', 'X1'), "ID1-X1 mapping is not one-to-one."
assert check_one_to_one(df, 'ID2', 'X2'), "ID2-X2 mapping is not one-to-one."
"""
Docking phase
"""
# preprocessing of complexes into geometric graphs
test_dataset = InferenceDataset(
df=df, out_dir=args.out_dir,
lm_embeddings=True,
receptor_radius=score_model_args.receptor_radius,
remove_hs=True, # score_model_args.remove_hs,
c_alpha_max_neighbors=score_model_args.c_alpha_max_neighbors,
all_atoms=score_model_args.all_atoms, atom_radius=score_model_args.atom_radius,
atom_max_neighbors=score_model_args.atom_max_neighbors,
knn_only_graph=False if not hasattr(score_model_args, 'not_knn_only_graph')
else not score_model_args.not_knn_only_graph
)
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)
if args.confidence_ckpt is not None and not confidence_args.use_original_model_cache:
log.info('Confidence model uses different type of graphs than the score model. '
'Loading (or creating if not existing) the data for the confidence model now.')
confidence_test_dataset = InferenceDataset(
df=df, out_dir=args.out_dir,
lm_embeddings=True,
receptor_radius=confidence_args.receptor_radius,
remove_hs=True, # confidence_args.remove_hs,
c_alpha_max_neighbors=confidence_args.c_alpha_max_neighbors,
all_atoms=confidence_args.all_atoms,
atom_radius=confidence_args.atom_radius,
atom_max_neighbors=confidence_args.atom_max_neighbors,
precomputed_lm_embeddings=test_dataset.lm_embeddings,
knn_only_graph=False if not hasattr(score_model_args, 'not_knn_only_graph')
else not score_model_args.not_knn_only_graph
)
else:
confidence_test_dataset = None
t_to_sigma = partial(t_to_sigma_compl, args=score_model_args)
model = get_model(score_model_args, device, t_to_sigma=t_to_sigma, no_parallel=True, old=args.old_score_model)
state_dict = torch.load(Path(args.score_ckpt), map_location='cpu', weights_only=True)
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.eval()
if args.confidence_ckpt is not None:
confidence_model = get_model(confidence_args, device, t_to_sigma=t_to_sigma, no_parallel=True,
confidence_mode=True, old=args.old_confidence_model)
state_dict = torch.load(Path(args.confidence_ckpt), map_location='cpu', weights_only=True)
confidence_model.load_state_dict(state_dict, strict=True)
confidence_model = confidence_model.to(device)
confidence_model.eval()
else:
confidence_model = None
confidence_args = None
tr_schedule = get_t_schedule(inference_steps=args.inference_steps, sigma_schedule='expbeta')
failures, skipped = 0, 0
samples_per_complex = args.samples_per_complex
test_ds_size = len(test_dataset)
df = test_loader.dataset.df
docking_dfs = []
log.info(f'Size of fragment dataset: {test_ds_size}')
for idx, orig_complex_graph in tqdm(enumerate(test_loader), total=test_ds_size):
if not orig_complex_graph.success[0]:
skipped += 1
log.warning(
f"The test dataset did not contain {df['name'].iloc[idx]}"
f" for {df['X1'].iloc[idx]} and {df['X2'].iloc[idx]}. We are skipping this complex.")
continue
try:
if confidence_test_dataset is not None:
confidence_complex_graph = confidence_test_dataset[idx]
if not confidence_complex_graph.success:
skipped += 1
log.warning(
f"The confidence dataset did not contain {orig_complex_graph.name}. We are skipping this complex.")
continue
confidence_data_list = [copy.deepcopy(confidence_complex_graph) for _ in range(samples_per_complex)]
else:
confidence_data_list = None
data_list = [copy.deepcopy(orig_complex_graph) for _ in range(samples_per_complex)]
randomize_position(data_list, score_model_args.no_torsion, False, score_model_args.tr_sigma_max,
initial_noise_std_proportion=args.initial_noise_std_proportion,
choose_residue=args.choose_residue)
lig = orig_complex_graph.mol[0]
# initialize visualisation
if args.save_visualisation:
visualization_list = []
for graph in data_list:
pdb = PDBFile(lig)
pdb.add(lig, 0, 0)
pdb.add((orig_complex_graph['ligand'].pos + orig_complex_graph.original_center).detach().cpu(), 1,
0)
pdb.add((graph['ligand'].pos + graph.original_center).detach().cpu(), part=1, order=1)
visualization_list.append(pdb)
else:
visualization_list = None
# run reverse diffusion
data_list, confidence = sampling(data_list=data_list, model=model,
inference_steps=args.actual_steps if args.actual_steps is not None
else args.inference_steps,
tr_schedule=tr_schedule, rot_schedule=tr_schedule,
tor_schedule=tr_schedule,
device=device, t_to_sigma=t_to_sigma, model_args=score_model_args,
visualization_list=visualization_list, confidence_model=confidence_model,
confidence_data_list=confidence_data_list,
confidence_model_args=confidence_args,
batch_size=args.n_poses, no_final_step_noise=args.no_final_step_noise,
temp_sampling=[args.temp_sampling_tr, args.temp_sampling_rot,
args.temp_sampling_tor],
temp_psi=[args.temp_psi_tr, args.temp_psi_rot, args.temp_psi_tor],
temp_sigma_data=[args.temp_sigma_data_tr, args.temp_sigma_data_rot,
args.temp_sigma_data_tor])
ligand_pos = np.asarray(
[complex_graph['ligand'].pos.cpu().numpy() + orig_complex_graph.original_center.cpu().numpy() for
complex_graph in data_list]
)
# save predictions
n_samples = len(confidence)
sample_df = pd.DataFrame([df.iloc[idx]] * n_samples)
confidence = confidence[:, 0].cpu().numpy()
sample_df['confidence'] = confidence
if args.save_docking:
sample_df['path'] = [
Path(
docking_out_dir, f"{df['name'].iloc[idx]}-confidence{confidence[i]:.2f}.sdf"
) for i in range(n_samples)
]
sample_df['ligand_mol']= [
create_mol_with_coords(
mol=RemoveAllHs(copy.deepcopy(lig)),
new_coords=pos,
path=sample_df['path'].iloc[i] if args.save_docking else None
) for i, pos in enumerate(ligand_pos)
]
# sample_df['ligand_pos'] = list(ligand_pos)
docking_dfs.append(sample_df)
# write_dir = f"{args.out_dir}/{df['name'].iloc[idx]}"
# for rank, pos in enumerate(ligand_pos):
# mol_pred = copy.deepcopy(lig)
# if score_model_args.remove_hs: mol_pred = RemoveAllHs(mol_pred)
# if rank == 0: write_mol_with_coords(mol_pred, pos, Path(write_dir, f'rank{rank + 1}.sdf'))
# write_mol_with_coords(mol_pred, pos,
# Path(write_dir, f'rank{rank + 1}_confidence{confidence[rank]:.2f}.sdf'))
# save visualisation frames
# if args.save_visualisation:
# if confidence is not None:
# for rank, batch_idx in enumerate(re_order):
# visualization_list[batch_idx].write(
# Path(write_dir, f'rank{rank + 1}_reverseprocess.pdb'))
# else:
# for rank, batch_idx in enumerate(ligand_pos):
# visualization_list[batch_idx].write(
# Path(write_dir, f'rank{rank + 1}_reverseprocess.pdb'))
except Exception as e:
log.warning("Failed on", orig_complex_graph["name"], e)
failures += 1
# Tear down DiffDock models and datasets
model.cpu()
del model
if confidence_model is not None:
confidence_model.cpu()
del confidence_model
del test_dataset
if confidence_test_dataset is not None:
del confidence_test_dataset
del test_loader
docking_df = pd.concat(docking_dfs, ignore_index=True)
result_msg = f"""
Failed for {failures} / {test_ds_size} complexes.
Skipped {skipped} / {test_ds_size} complexes.
"""
if failures or skipped:
log.warning(result_msg)
else:
log.info(result_msg)
log.info(f"Results saved in {docking_out_dir}")
return docking_df
def calculate_mol_atomic_distances(mol1, mol2, distance_type='min'):
mol1_coords = [
mol1.GetConformer().GetAtomPosition(i) for i in range(mol1.GetNumAtoms())
]
mol2_coords = [
mol2.GetConformer().GetAtomPosition(i) for i in range(mol2.GetNumAtoms())
]
# Ensure numpy arrays
mol1_coords = np.array(mol1_coords)
mol2_coords = np.array(mol2_coords)
# Compute pairwise distances between carbon atoms
atom_pairwise_distances = np.linalg.norm(mol1_coords[:, None, :] - mol2_coords[None, :, :], axis=-1)
# if np.any(np.isnan(atom_pairwise_distances)):
# import pdb
# pdb.set_trace() # Trigger a breakpoint if NaN is found
if distance_type == 'min':
return atom_pairwise_distances.min()
elif distance_type == 'mean':
return atom_pairwise_distances.mean()
elif distance_type is None:
return atom_pairwise_distances
else:
raise ValueError(f"Unsupported distance_type: {distance_type}")
def process_docking_results(
df,
eps=5, # Distance threshold for DBSCAN clustering
min_samples=5, # Minimum number of samples for a cluster (enrichment)
frag_dist_range=(2, 5), # Distance range for fragment linking
distance_type='min', # Type of distance to compute between fragments
):
assert len(frag_dist_range) == 2, 'Distance range must be a tuple of two values in Angstroms (Å).'
frag_dist_range = sorted(frag_dist_range)
# The mols in df should have been processed to have no explicit hydrogens, except heavy hydrogen isotopes.
docking_summaries = [] # For saving intermediate docking results
fragment_combos = [] # Fragment pairs for the linking step
# 1. Cluster docking poses
# Compute pairwise distances of molecules defined by the closest non-heavy atoms
for protein, protein_df in df.groupby('X2'):
protein_id = protein_df['ID2'].iloc[0]
protein_path = protein_df['protein_path'].iloc[0]
protein_df['index'] = protein_df.index
log.info(f'Processing docking results for {protein_id}...')
protein_fragment_combos = []
dist_matrix = np.stack(
protein_df['ligand_mol'].parallel_apply(
lambda mol1: [
calculate_mol_atomic_distances(mol1, mol2, distance_type=distance_type)
for mol2 in protein_df['ligand_mol']
]
)
)
# Perform DBSCAN clustering
dbscan = DBSCAN(eps=eps, min_samples=min_samples, metric='precomputed')
protein_df['cluster'] = dbscan.fit_predict(dist_matrix)
protein_df = protein_df.sort_values(
by=['X1', 'cluster', 'confidence'], ascending=[True, True, False]
)
# Add conformer number to ID1
protein_df.groupby('ID1').cumcount().astype(str).radd(protein_df['ID1'] + '_')
if args.save_docking:
docking_summaries.append(
protein_df[['name', 'ID2', 'X2', 'ID1', 'X1', 'cluster', 'confidence', 'path']]
)
# Filter out outlier poses
protein_df = protein_df[protein_df['cluster'] != -1]
# Keep only the highest confidence pose per protein per ligand per cluster
protein_df = protein_df.groupby(['X1', 'cluster']).first().reset_index()
# 2. Create fragment-linking pairs
for cluster, cluster_df in protein_df.groupby('cluster'):
if len(cluster_df) > 1: # Skip clusters with only one pose
pairs = list(itertools.combinations(cluster_df['index'], 2))
for i, j in pairs:
row1 = cluster_df[cluster_df['index'] == i].iloc[0]
row2 = cluster_df[cluster_df['index'] == j].iloc[0]
dist = dist_matrix[i, j]
# Check if intermolecular distance is within the range
if frag_dist_range[0] < dist < frag_dist_range[1]:
combined_smiles = f"{row1['X1']}.{row2['X1']}"
combined_mol = Chem.CombineMols(row1['ligand_mol'], row2['ligand_mol'])
complex_name = f"{protein_id}-{row1['ID1']}-{row2['ID1']}"
ligand_path = f"{row1['path']},{row2['path']}"
protein_fragment_combos.append(
(complex_name, protein, protein_path, combined_smiles, ligand_path, combined_mol, dist)
)
log.info(f'Number of fragment pairs for {protein_id}: {len(protein_fragment_combos)}.')
fragment_combos.extend(protein_fragment_combos)
# Save intermediate docking results
if args.save_docking:
docking_summary_df = pd.concat(docking_summaries, ignore_index=True)
docking_summary_df.to_csv(Path(args.out_dir, 'docking_summary.csv'), index=False)
log.info(f'Saved intermediate docking results to {args.out_dir}')
# Convert fragment pair results to DataFrame
if fragment_combos:
linking_df = pd.DataFrame(
fragment_combos, columns=['name', 'X2', 'protein_path', 'X1', 'ligand_path', 'ligand_mol', 'distance']
)
linking_df[
['name', 'X2', 'protein_path', 'X1', 'ligand_path', 'distance']
].to_csv(Path(args.out_dir, 'linking_summary.csv'), index=False)
return linking_df
else:
raise ValueError('No eligible fragment pairs found for linking.')
def get_pocket(mol, pdb_path, backbone_atoms_only=False):
struct = PDBParser().get_structure('', pdb_path)
residue_ids = []
atom_coords = []
for residue in struct.get_residues():
resid = residue.get_id()[1]
for atom in residue.get_atoms():
atom_coords.append(atom.get_coord())
residue_ids.append(resid)
residue_ids = np.array(residue_ids)
atom_coords = np.array(atom_coords)
mol_atom_coords = mol.GetConformer().GetPositions()
distances = np.linalg.norm(atom_coords[:, None, :] - mol_atom_coords[None, :, :], axis=-1)
contact_residues = np.unique(residue_ids[np.where(distances.min(1) <= 6)[0]])
pocket_coords = []
pocket_types = []
for residue in struct.get_residues():
resid = residue.get_id()[1]
if resid not in contact_residues:
continue
for atom in residue.get_atoms():
atom_name = atom.get_name()
atom_type = atom.element.upper()
atom_coord = atom.get_coord()
if backbone_atoms_only and atom_name not in {'N', 'CA', 'C', 'O'}:
continue
pocket_coords.append(atom_coord.tolist())
pocket_types.append(atom_type)
pocket_pos = []
pocket_one_hot = []
pocket_charges = []
for coord, atom_type in zip(pocket_coords, pocket_types):
if atom_type not in const.GEOM_ATOM2IDX.keys():
continue
pocket_pos.append(coord)
pocket_one_hot.append(get_one_hot(atom_type, const.GEOM_ATOM2IDX))
pocket_charges.append(const.GEOM_CHARGES[atom_type])
pocket_pos = np.array(pocket_pos)
pocket_one_hot = np.array(pocket_one_hot)
pocket_charges = np.array(pocket_charges)
return pocket_pos, pocket_one_hot, pocket_charges
def generate_linker(
df, backbone_atoms_only, model,
output_dir, n_samples, n_steps, linker_size, anchors, max_batch_size, random_seed
):
# Setup
if random_seed is not None:
set_deterministic(random_seed)
output_dir = Path(output_dir, 'linking')
output_dir.mkdir(exist_ok=True, parents=True)
if linker_size.isdigit():
print(f'Will generate linkers with {linker_size} atoms')
linker_size = int(linker_size)
def sample_fn(_data):
return torch.ones(_data['positions'].shape[0], device=device, dtype=const.TORCH_INT) * linker_size
else:
boundaries = [x.strip() for x in linker_size.split(',')]
if len(boundaries) == 2 and boundaries[0].isdigit() and boundaries[1].isdigit():
left = int(boundaries[0])
right = int(boundaries[1])
print(f'Will generate linkers with numbers of atoms sampled from U({left}, {right})')
def sample_fn(_data):
shape = len(_data['positions']),
return torch.randint(left, right + 1, shape, device=device, dtype=const.TORCH_INT)
else:
print(f'Will generate linkers with sampled numbers of atoms')
size_classifier = SizeClassifier.load_from_checkpoint(linker_size, map_location=device).eval().to(device)
def sample_fn(_data):
out, _ = size_classifier.forward(_data, return_loss=False, with_pocket=True, adjust_shape=True)
probabilities = torch.softmax(out, dim=1)
distribution = torch.distributions.Categorical(probs=probabilities)
samples = distribution.sample()
sizes = []
for label in samples.detach().cpu().numpy():
sizes.append(size_classifier.linker_id2size[label])
sizes = torch.tensor(sizes, device=samples.device, dtype=const.TORCH_INT)
return sizes
if n_steps is not None:
model.edm.T = n_steps
if model.center_of_mass == 'anchors' and anchors is None:
print(
'Please pass anchor atoms indices '
'or use another DiffLinker model that does not require information about anchors'
)
return
cached_parse_molecule = cache(parse_molecule)
dataset = []
for i, row in df.iterrows():
mol = row['ligand_mol'] # Hs already removed
# Parsing fragments data
frag_pos, frag_one_hot, frag_charges = cached_parse_molecule(mol, is_geom=ddpm.is_geom)
# Parsing pocket data
pocket_pos, pocket_one_hot, pocket_charges = get_pocket(mol, row['protein_path'], backbone_atoms_only)
positions = np.concatenate([frag_pos, pocket_pos], axis=0)
one_hot = np.concatenate([frag_one_hot, pocket_one_hot], axis=0)
charges = np.concatenate([frag_charges, pocket_charges], axis=0)
anchor_flags = np.zeros_like(charges)
if anchors is not None:
for anchor in anchors.split(','):
anchor_flags[int(anchor.strip()) - 1] = 1
fragment_only_mask = np.concatenate([
np.ones_like(frag_charges),
np.zeros_like(pocket_charges),
])
pocket_mask = np.concatenate([
np.zeros_like(frag_charges),
np.ones_like(pocket_charges),
])
linker_mask = np.concatenate([
np.zeros_like(frag_charges),
np.zeros_like(pocket_charges),
])
fragment_mask = np.concatenate([
np.ones_like(frag_charges),
np.ones_like(pocket_charges),
])
dataset.extend([{
'name': row['name'],
'X1': row['X1'],
'X2': row['X2'],
'protein_path': row['protein_path'],
'ligand_path': row['ligand_path'],
'positions': torch.tensor(positions, dtype=const.TORCH_FLOAT, device=device),
'one_hot': torch.tensor(one_hot, dtype=const.TORCH_FLOAT, device=device),
'charges': torch.tensor(charges, dtype=const.TORCH_FLOAT, device=device),
'anchors': torch.tensor(anchor_flags, dtype=const.TORCH_FLOAT, device=device),
'fragment_only_mask': torch.tensor(fragment_only_mask, dtype=const.TORCH_FLOAT, device=device),
'pocket_mask': torch.tensor(pocket_mask, dtype=const.TORCH_FLOAT, device=device),
'fragment_mask': torch.tensor(fragment_mask, dtype=const.TORCH_FLOAT, device=device),
'linker_mask': torch.tensor(linker_mask, dtype=const.TORCH_FLOAT, device=device),
'num_atoms': len(positions)
}] * n_samples)
dataset = ProteinConditionedDataset(data=dataset)
ddpm.val_dataset = dataset
global_batch_size = min(n_samples, max_batch_size)
dataloader = get_dataloader(
dataset, batch_size=global_batch_size, collate_fn=collate_with_fragment_without_pocket_edges
)
# df.drop(columns=['ligand_mol', 'protein_path'], inplace=True)
linking_dfs = []
# Sampling
print('Sampling...')
# TODO: update linking_summary.csv per batch
for batch_i, data in tqdm(enumerate(dataloader), total=len(dataloader)):
effective_batch_size = len(data['positions'])
complex_name = data['name'][0]
batch_df = pd.DataFrame({
'name': data['name'],
'X1': data['X1'],
'X2': data['X2'],
'protein_path': data['protein_path'],
'ligand_path': data['ligand_path'],
})
chain = None
node_mask = None
for i in range(5):
try:
chain, node_mask = ddpm.sample_chain(data, sample_fn=sample_fn, keep_frames=1)
break
except FoundNaNException:
continue
if chain is None:
log.warning(f'Could not generate linker for {complex_name} in 5 attempts')
continue
x = chain[0][:, :, :ddpm.n_dims]
h = chain[0][:, :, ddpm.n_dims:]
# Put the molecule back to the initial orientation
com_mask = data['fragment_only_mask'] if ddpm.center_of_mass == 'fragments' else data['anchors']
pos_masked = data['positions'] * com_mask
N = com_mask.sum(1, keepdims=True)
mean = torch.sum(pos_masked, dim=1, keepdim=True) / N
x = x + mean * node_mask
node_mask[torch.where(data['pocket_mask'])] = 0
batch_df['out_path'] = [Path(output_dir, f'{complex_name}_{i}.sdf') for i in range(effective_batch_size)]
batch_df['one_hot'] = list(h.cpu())
batch_df['positions'] = list(x.cpu())
batch_df['node_mask'] = list(node_mask.cpu())
batch_df['X1^'] = batch_df.parallel_apply(
lambda row: save_sdf(
row['out_path'], row['one_hot'], row['positions'], row['node_mask'], is_geom=ddpm.is_geom
), axis=1
)
linking_dfs.append(batch_df[['name', 'protein_path', 'X2', 'ligand_path', 'X1', 'X1^', 'out_path']])
# for i in range(effective_batch_size):
# # # Save XYZ file and generate SMILES
# # out_xyz = Path(output_dir, f'{name}_{offset_idx+i}.xyz')
# # smiles = save_xyz_files(out_xyz, h[i], x[i], node_mask[i], is_geom=ddpm.is_geom)
# # # Convert XYZ to SDF
# # out_sdf = Path(output_dir, name, f'output_{offset_idx+i}.sdf')
# # with open(os.devnull, 'w') as devnull:
# # subprocess.run(f'obabel {out_xyz} -O {out_sdf} -q', shell=True, stdout=devnull)
# # Save SDF file and generate SMILES
# out_sdf = Path(output_dir, f'{data["name"][i]}.sdf')
# smiles = save_sdf(out_sdf, h[i], x[i], node_mask[i], is_geom=ddpm.is_geom)
#
# # Add experiment summary info
# batch_df['X1^'] = smiles
# batch_df['out_path'] = str(out_sdf)
# linking_dfs.append(batch_df)
if linking_dfs:
linking_summary_df = pd.concat(linking_dfs, ignore_index=True)
linking_summary_df.to_csv(Path(output_dir.parent, 'linking_summary.csv'), index=False)
print(f'Saved experiment summary and generated molecules to {output_dir}')
else:
raise ValueError('No linkers generated.')
if __name__ == "__main__":
parser = ArgumentParser()
# Fragment docking settings
parser.add_argument('--config', type=FileType(mode='r'), default='default_inference_args.yaml')
parser.add_argument('--protein_ligand_csv', type=str, default=None,
help='Path to a .csv file specifying the input as described in the README. '
'If this is not None, it will be used instead of the `X1` and `X2` parameters')
parser.add_argument('-n', '--name', type=str, default=None,
help='Name that the experiment will be saved with')
parser.add_argument('--X1', type=str,
help='Either a SMILES string or the path of a molecule file that rdkit can read')
parser.add_argument('--X2', type=str,
help='Either a FASTA sequence or the path of a protein for ESMFold')
parser.add_argument('-l', '--log', '--loglevel', type=str, default='INFO', dest="loglevel",
help='Log level. Default %(default)s')
parser.add_argument('--out_dir', type=str, default='results/',
help='Directory where the outputs will be written to')
parser.add_argument('--save_docking', action='store_true', default=True,
help='Save the intermediate docking results including SDF files and a summary CSV.')
parser.add_argument('--save_visualisation', action='store_true', default=False,
help='Save a pdb file with all of the steps of the reverse diffusion')
parser.add_argument('--samples_per_complex', type=int, default=10,
help='Number of samples to generate')
# parser.add_argument('--model_dir', type=str, default=None,
# help='Path to folder with trained score model and hyperparameters')
parser.add_argument('--score_ckpt', type=str, default='best_ema_inference_epoch_model.pt',
help='Checkpoint to use for the score model')
# parser.add_argument('--confidence_model_dir', type=str, default=None,
# help='Path to folder with trained confidence model and hyperparameters')
parser.add_argument('--confidence_ckpt', type=str, default='best_model.pt',
help='Checkpoint to use for the confidence model')
parser.add_argument('--n_poses', type=int, default=10, help='')
parser.add_argument('--no_final_step_noise', action='store_true', default=True,
help='Use no noise in the final step of the reverse diffusion')
parser.add_argument('--inference_steps', type=int, default=20, help='Number of denoising steps')
parser.add_argument('--actual_steps', type=int, default=None,
help='Number of denoising steps that are actually performed')
parser.add_argument('--old_score_model', action='store_true', default=False, help='')
parser.add_argument('--old_confidence_model', action='store_true', default=True, help='')
parser.add_argument('--initial_noise_std_proportion', type=float, default=-1.0,
help='Initial noise std proportion')
parser.add_argument('--choose_residue', action='store_true', default=False, help='')
parser.add_argument('--temp_sampling_tr', type=float, default=1.0)
parser.add_argument('--temp_psi_tr', type=float, default=0.0)
parser.add_argument('--temp_sigma_data_tr', type=float, default=0.5)
parser.add_argument('--temp_sampling_rot', type=float, default=1.0)
parser.add_argument('--temp_psi_rot', type=float, default=0.0)
parser.add_argument('--temp_sigma_data_rot', type=float, default=0.5)
parser.add_argument('--temp_sampling_tor', type=float, default=1.0)
parser.add_argument('--temp_psi_tor', type=float, default=0.0)
parser.add_argument('--temp_sigma_data_tor', type=float, default=0.5)
parser.add_argument('--gnina_minimize', action='store_true', default=False, help='')
parser.add_argument('--gnina_path', type=str, default='gnina', help='')
parser.add_argument('--gnina_log_file', type=str, default='gnina_log.txt',
help='') # To redirect gnina subprocesses stdouts from the terminal window
parser.add_argument('--gnina_full_dock', action='store_true', default=False, help='')
parser.add_argument('--gnina_autobox_add', type=float, default=4.0)
parser.add_argument('--gnina_poses_to_optimize', type=int, default=1)
# Linker generation settings
# parser.add_argument('--fragments', action='store', type=str, required=True,
# help='Path to the file with input fragments'
# )
# parser.add_argument(
# '--protein', action='store', type=str, required=True,
# help='Path to the file with the target protein'
# )
parser.add_argument(
'--backbone_atoms_only', action='store_true', required=False, default=False,
help='Flag if to use only protein backbone atoms'
)
parser.add_argument(
'--linker_ckpt', action='store', type=str,
help='Path to the DiffLinker model'
)
parser.add_argument(
'--linker_size', action='store', type=str,
help='Linker size (int) or allowed size boundaries (comma-separated) or path to the size prediction model'
)
parser.add_argument(
'--n_linkers', action='store', type=int, required=False, default=5,
help='Number of linkers to generate'
)
parser.add_argument(
'--n_steps', action='store', type=int, required=False, default=1000,
help='Number of denoising steps'
)
parser.add_argument(
'--anchors', action='store', type=str, required=False, default=None,
help='Comma-separated indices of anchor atoms '
'(according to the order of atoms in the input fragments file, enumeration starts with 1)'
)
parser.add_argument(
'--max_batch_size', action='store', type=int, required=False, default=16,
help='Max batch size'
)
parser.add_argument(
'--random_seed', action='store', type=int, required=False, default=None,
help='Random seed'
)
parser.add_argument(
'--robust', action='store_true', required=False, default=False,
help='Robust sampling modification'
)
parser.add_argument(
'--dock', action='store_true', default=False,
help='Fragment docking with DiffDock'
)
parser.add_argument(
'--link', action='store_true', default=False,
help='Linker generation with DiffLinker'
)
args = parser.parse_args()
if args.config:
config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in config_dict.items():
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
configure_logger(args.loglevel)
log = get_logger()
date_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
experiment_name = f"{date_time}_{args.name}"
args.out_dir = Path(args.out_dir, experiment_name)
if args.dock:
docking_df = dock_fragments(args)
linking_df = process_docking_results(
docking_df,
eps=args.eps, min_samples=args.min_samples,
frag_dist_range=args.frag_dist_range, distance_type=args.distance_type
)
if args.link:
ddpm = DDPM.load_from_checkpoint(args.linker_ckpt, map_location=device, robust=args.robust).eval().to(device)
generate_linker(
linking_df,
backbone_atoms_only=args.backbone_atoms_only,
model=ddpm,
output_dir=args.out_dir,
n_samples=args.n_linkers,
n_steps=args.n_steps,
linker_size=args.linker_size,
anchors=args.anchors,
max_batch_size=args.max_batch_size,
random_seed=args.random_seed,
)
if args.link:
linking_df = pd.read_csv(args.protein_ligand_csv)
ddpm = DDPM.load_from_checkpoint(args.linker_ckpt, map_location=device, robust=args.robust).eval().to(device)
generate_linker(
linking_df,
backbone_atoms_only=args.backbone_atoms_only,
model=ddpm,
output_dir=args.out_dir,
n_samples=args.n_linkers,
n_steps=args.n_steps,
linker_size=args.linker_size,
anchors=args.anchors,
max_batch_size=args.max_batch_size,
random_seed=args.random_seed,
)