Spaces:
Sleeping
Sleeping
import math | |
import torch.nn.functional as F | |
import numpy as np | |
import torch | |
def quaternion_to_matrix(quaternions): | |
""" | |
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html | |
Convert rotations given as quaternions to rotation matrices. | |
Args: | |
quaternions: quaternions with real part first, | |
as tensor of shape (..., 4). | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
r, i, j, k = torch.unbind(quaternions, -1) | |
two_s = 2.0 / (quaternions * quaternions).sum(-1) | |
o = torch.stack( | |
( | |
1 - two_s * (j * j + k * k), | |
two_s * (i * j - k * r), | |
two_s * (i * k + j * r), | |
two_s * (i * j + k * r), | |
1 - two_s * (i * i + k * k), | |
two_s * (j * k - i * r), | |
two_s * (i * k - j * r), | |
two_s * (j * k + i * r), | |
1 - two_s * (i * i + j * j), | |
), | |
-1, | |
) | |
return o.reshape(quaternions.shape[:-1] + (3, 3)) | |
def axis_angle_to_quaternion(axis_angle): | |
""" | |
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html | |
Convert rotations given as axis/angle to quaternions. | |
Args: | |
axis_angle: Rotations given as a vector in axis angle form, | |
as a tensor of shape (..., 3), where the magnitude is | |
the angle turned anticlockwise in radians around the | |
vector's direction. | |
Returns: | |
quaternions with real part first, as tensor of shape (..., 4). | |
""" | |
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True) | |
half_angles = 0.5 * angles | |
eps = 1e-6 | |
small_angles = angles.abs() < eps | |
sin_half_angles_over_angles = torch.empty_like(angles) | |
sin_half_angles_over_angles[~small_angles] = ( | |
torch.sin(half_angles[~small_angles]) / angles[~small_angles] | |
) | |
# for x small, sin(x/2) is about x/2 - (x/2)^3/6 | |
# so sin(x/2)/x is about 1/2 - (x*x)/48 | |
sin_half_angles_over_angles[small_angles] = ( | |
0.5 - (angles[small_angles] * angles[small_angles]) / 48 | |
) | |
quaternions = torch.cat( | |
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1 | |
) | |
return quaternions | |
def axis_angle_to_matrix(axis_angle): | |
""" | |
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html | |
Convert rotations given as axis/angle to rotation matrices. | |
Args: | |
axis_angle: Rotations given as a vector in axis angle form, | |
as a tensor of shape (..., 3), where the magnitude is | |
the angle turned anticlockwise in radians around the | |
vector's direction. | |
Returns: | |
Rotation matrices as tensor of shape (..., 3, 3). | |
""" | |
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle)) | |
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor: | |
""" | |
Returns torch.sqrt(torch.max(0, x)) | |
but with a zero subgradient where x is 0. | |
""" | |
ret = torch.zeros_like(x) | |
positive_mask = x > 0 | |
ret[positive_mask] = torch.sqrt(x[positive_mask]) | |
return ret | |
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as rotation matrices to quaternions. | |
Args: | |
matrix: Rotation matrices as tensor of shape (..., 3, 3). | |
Returns: | |
quaternions with real part first, as tensor of shape (..., 4). | |
""" | |
if matrix.size(-1) != 3 or matrix.size(-2) != 3: | |
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") | |
batch_dim = matrix.shape[:-2] | |
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind( | |
matrix.reshape(batch_dim + (9,)), dim=-1 | |
) | |
q_abs = _sqrt_positive_part( | |
torch.stack( | |
[ | |
1.0 + m00 + m11 + m22, | |
1.0 + m00 - m11 - m22, | |
1.0 - m00 + m11 - m22, | |
1.0 - m00 - m11 + m22, | |
], | |
dim=-1, | |
) | |
) | |
# we produce the desired quaternion multiplied by each of r, i, j, k | |
quat_by_rijk = torch.stack( | |
[ | |
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and | |
# `int`. | |
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), | |
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and | |
# `int`. | |
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), | |
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and | |
# `int`. | |
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), | |
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and | |
# `int`. | |
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), | |
], | |
dim=-2, | |
) | |
# We floor here at 0.1 but the exact level is not important; if q_abs is small, | |
# the candidate won't be picked. | |
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) | |
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) | |
# if not for numerical problems, quat_candidates[i] should be same (up to a sign), | |
# forall i; we pick the best-conditioned one (with the largest denominator) | |
return quat_candidates[ | |
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, : | |
].reshape(batch_dim + (4,)) | |
def quaternion_to_axis_angle(quaternions: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as quaternions to axis/angle. | |
Args: | |
quaternions: quaternions with real part first, | |
as tensor of shape (..., 4). | |
Returns: | |
Rotations given as a vector in axis angle form, as a tensor | |
of shape (..., 3), where the magnitude is the angle | |
turned anticlockwise in radians around the vector's | |
direction. | |
""" | |
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True) | |
half_angles = torch.atan2(norms, quaternions[..., :1]) | |
angles = 2 * half_angles | |
eps = 1e-6 | |
small_angles = angles.abs() < eps | |
sin_half_angles_over_angles = torch.empty_like(angles) | |
sin_half_angles_over_angles[~small_angles] = ( | |
torch.sin(half_angles[~small_angles]) / angles[~small_angles] | |
) | |
# for x small, sin(x/2) is about x/2 - (x/2)^3/6 | |
# so sin(x/2)/x is about 1/2 - (x*x)/48 | |
sin_half_angles_over_angles[small_angles] = ( | |
0.5 - (angles[small_angles] * angles[small_angles]) / 48 | |
) | |
return quaternions[..., 1:] / sin_half_angles_over_angles | |
def matrix_to_axis_angle(matrix: torch.Tensor) -> torch.Tensor: | |
""" | |
Convert rotations given as rotation matrices to axis/angle. | |
Args: | |
matrix: Rotation matrices as tensor of shape (..., 3, 3). | |
Returns: | |
Rotations given as a vector in axis angle form, as a tensor | |
of shape (..., 3), where the magnitude is the angle | |
turned anticlockwise in radians around the vector's | |
direction. | |
""" | |
return quaternion_to_axis_angle(matrix_to_quaternion(matrix)) | |
def rigid_transform_Kabsch_3D_torch(A, B): | |
# R = 3x3 rotation matrix, t = 3x1 column vector | |
# This already takes residue identity into account. | |
assert A.shape[1] == B.shape[1] | |
num_rows, num_cols = A.shape | |
if num_rows != 3: | |
raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}") | |
num_rows, num_cols = B.shape | |
if num_rows != 3: | |
raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}") | |
# find mean column wise: 3 x 1 | |
centroid_A = torch.mean(A, axis=1, keepdims=True) | |
centroid_B = torch.mean(B, axis=1, keepdims=True) | |
# subtract mean | |
Am = A - centroid_A | |
Bm = B - centroid_B | |
H = Am @ Bm.T | |
# find rotation | |
U, S, Vt = torch.linalg.svd(H) | |
R = Vt.T @ U.T | |
# special reflection case | |
if torch.linalg.det(R) < 0: | |
# print("det(R) < R, reflection detected!, correcting for it ...") | |
SS = torch.diag(torch.tensor([1.,1.,-1.], device=A.device)) | |
R = (Vt.T @ SS) @ U.T | |
assert math.fabs(torch.linalg.det(R) - 1) < 3e-3 # note I had to change this error bound to be higher | |
t = -R @ centroid_A + centroid_B | |
return R, t | |
def rigid_transform_Kabsch_3D_torch_batch(A, B): | |
# R = Bx3x3 rotation matrix, t = Bx3x1 column vector | |
assert A.shape == B.shape | |
_, N, M = A.shape | |
if M != 3: | |
raise Exception(f"matrix A and B should be BxNx3") | |
A, B = A.permute(0, 2, 1), B.permute(0, 2, 1) | |
# find mean column wise: 3 x 1 | |
centroid_A = torch.mean(A, axis=2, keepdims=True) | |
centroid_B = torch.mean(B, axis=2, keepdims=True) | |
# subtract mean | |
Am = A - centroid_A | |
Bm = B - centroid_B | |
H = torch.bmm(Am, Bm.transpose(1, 2)) | |
# find rotation | |
U, S, Vt = torch.linalg.svd(H) | |
R = torch.bmm(Vt.transpose(1, 2), U.transpose(1, 2)) | |
# reflection case | |
SS = torch.diag(torch.tensor([1., 1., -1.], device=A.device)) | |
Rm = torch.bmm(Vt.transpose(1,2) @ SS, U.transpose(1, 2)) | |
R = torch.where(torch.linalg.det(R)[:, None, None] < 0, Rm, R) | |
assert torch.all(torch.abs(torch.linalg.det(R) - 1) < 3e-3) # note I had to change this error bound to be higher | |
t = torch.bmm(-R, centroid_A) + centroid_B | |
return R, t | |
def rigid_transform_Kabsch_independent_torch(A, B): | |
# R = 3x3 rotation matrix, t = 3x1 column vector | |
# This already takes residue identity into account. | |
assert A.shape[1] == B.shape[1] | |
num_rows, num_cols = A.shape | |
if num_rows != 3: | |
raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}") | |
num_rows, num_cols = B.shape | |
if num_rows != 3: | |
raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}") | |
# find mean column wise: 3 x 1 | |
centroid_A = torch.mean(A, axis=1, keepdims=True) | |
centroid_B = torch.mean(B, axis=1, keepdims=True) | |
# subtract mean | |
Am = A - centroid_A | |
Bm = B - centroid_B | |
H = Am @ Bm.T | |
# find rotation | |
U, S, Vt = torch.linalg.svd(H) | |
R = Vt.T @ U.T | |
# special reflection case | |
if torch.linalg.det(R) < 0: | |
# print("det(R) < R, reflection detected!, correcting for it ...") | |
SS = torch.diag(torch.tensor([1.,1.,-1.], device=A.device)) | |
R = (Vt.T @ SS) @ U.T | |
assert math.fabs(torch.linalg.det(R) - 1) < 3e-3 # note I had to change this error bound to be higher | |
t = - centroid_A + centroid_B # note does not change rotation | |
R_vec = matrix_to_axis_angle(R) | |
return t, R_vec | |