GenFBDD / utils /geometry.py
libokj's picture
Initial commit GenFBDD
9439b9b
raw
history blame
10.7 kB
import math
import torch.nn.functional as F
import numpy as np
import torch
def quaternion_to_matrix(quaternions):
"""
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html
Convert rotations given as quaternions to rotation matrices.
Args:
quaternions: quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
r, i, j, k = torch.unbind(quaternions, -1)
two_s = 2.0 / (quaternions * quaternions).sum(-1)
o = torch.stack(
(
1 - two_s * (j * j + k * k),
two_s * (i * j - k * r),
two_s * (i * k + j * r),
two_s * (i * j + k * r),
1 - two_s * (i * i + k * k),
two_s * (j * k - i * r),
two_s * (i * k - j * r),
two_s * (j * k + i * r),
1 - two_s * (i * i + j * j),
),
-1,
)
return o.reshape(quaternions.shape[:-1] + (3, 3))
def axis_angle_to_quaternion(axis_angle):
"""
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html
Convert rotations given as axis/angle to quaternions.
Args:
axis_angle: Rotations given as a vector in axis angle form,
as a tensor of shape (..., 3), where the magnitude is
the angle turned anticlockwise in radians around the
vector's direction.
Returns:
quaternions with real part first, as tensor of shape (..., 4).
"""
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
half_angles = 0.5 * angles
eps = 1e-6
small_angles = angles.abs() < eps
sin_half_angles_over_angles = torch.empty_like(angles)
sin_half_angles_over_angles[~small_angles] = (
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
)
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
# so sin(x/2)/x is about 1/2 - (x*x)/48
sin_half_angles_over_angles[small_angles] = (
0.5 - (angles[small_angles] * angles[small_angles]) / 48
)
quaternions = torch.cat(
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
)
return quaternions
def axis_angle_to_matrix(axis_angle):
"""
From https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html
Convert rotations given as axis/angle to rotation matrices.
Args:
axis_angle: Rotations given as a vector in axis angle form,
as a tensor of shape (..., 3), where the magnitude is
the angle turned anticlockwise in radians around the
vector's direction.
Returns:
Rotation matrices as tensor of shape (..., 3, 3).
"""
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
"""
Returns torch.sqrt(torch.max(0, x))
but with a zero subgradient where x is 0.
"""
ret = torch.zeros_like(x)
positive_mask = x > 0
ret[positive_mask] = torch.sqrt(x[positive_mask])
return ret
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to quaternions.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
Returns:
quaternions with real part first, as tensor of shape (..., 4).
"""
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.")
batch_dim = matrix.shape[:-2]
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
matrix.reshape(batch_dim + (9,)), dim=-1
)
q_abs = _sqrt_positive_part(
torch.stack(
[
1.0 + m00 + m11 + m22,
1.0 + m00 - m11 - m22,
1.0 - m00 + m11 - m22,
1.0 - m00 - m11 + m22,
],
dim=-1,
)
)
# we produce the desired quaternion multiplied by each of r, i, j, k
quat_by_rijk = torch.stack(
[
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
# pyre-fixme[58]: `**` is not supported for operand types `Tensor` and
# `int`.
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
],
dim=-2,
)
# We floor here at 0.1 but the exact level is not important; if q_abs is small,
# the candidate won't be picked.
flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device)
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr))
# if not for numerical problems, quat_candidates[i] should be same (up to a sign),
# forall i; we pick the best-conditioned one (with the largest denominator)
return quat_candidates[
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
].reshape(batch_dim + (4,))
def quaternion_to_axis_angle(quaternions: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as quaternions to axis/angle.
Args:
quaternions: quaternions with real part first,
as tensor of shape (..., 4).
Returns:
Rotations given as a vector in axis angle form, as a tensor
of shape (..., 3), where the magnitude is the angle
turned anticlockwise in radians around the vector's
direction.
"""
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True)
half_angles = torch.atan2(norms, quaternions[..., :1])
angles = 2 * half_angles
eps = 1e-6
small_angles = angles.abs() < eps
sin_half_angles_over_angles = torch.empty_like(angles)
sin_half_angles_over_angles[~small_angles] = (
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
)
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
# so sin(x/2)/x is about 1/2 - (x*x)/48
sin_half_angles_over_angles[small_angles] = (
0.5 - (angles[small_angles] * angles[small_angles]) / 48
)
return quaternions[..., 1:] / sin_half_angles_over_angles
def matrix_to_axis_angle(matrix: torch.Tensor) -> torch.Tensor:
"""
Convert rotations given as rotation matrices to axis/angle.
Args:
matrix: Rotation matrices as tensor of shape (..., 3, 3).
Returns:
Rotations given as a vector in axis angle form, as a tensor
of shape (..., 3), where the magnitude is the angle
turned anticlockwise in radians around the vector's
direction.
"""
return quaternion_to_axis_angle(matrix_to_quaternion(matrix))
def rigid_transform_Kabsch_3D_torch(A, B):
# R = 3x3 rotation matrix, t = 3x1 column vector
# This already takes residue identity into account.
assert A.shape[1] == B.shape[1]
num_rows, num_cols = A.shape
if num_rows != 3:
raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}")
num_rows, num_cols = B.shape
if num_rows != 3:
raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}")
# find mean column wise: 3 x 1
centroid_A = torch.mean(A, axis=1, keepdims=True)
centroid_B = torch.mean(B, axis=1, keepdims=True)
# subtract mean
Am = A - centroid_A
Bm = B - centroid_B
H = Am @ Bm.T
# find rotation
U, S, Vt = torch.linalg.svd(H)
R = Vt.T @ U.T
# special reflection case
if torch.linalg.det(R) < 0:
# print("det(R) < R, reflection detected!, correcting for it ...")
SS = torch.diag(torch.tensor([1.,1.,-1.], device=A.device))
R = (Vt.T @ SS) @ U.T
assert math.fabs(torch.linalg.det(R) - 1) < 3e-3 # note I had to change this error bound to be higher
t = -R @ centroid_A + centroid_B
return R, t
def rigid_transform_Kabsch_3D_torch_batch(A, B):
# R = Bx3x3 rotation matrix, t = Bx3x1 column vector
assert A.shape == B.shape
_, N, M = A.shape
if M != 3:
raise Exception(f"matrix A and B should be BxNx3")
A, B = A.permute(0, 2, 1), B.permute(0, 2, 1)
# find mean column wise: 3 x 1
centroid_A = torch.mean(A, axis=2, keepdims=True)
centroid_B = torch.mean(B, axis=2, keepdims=True)
# subtract mean
Am = A - centroid_A
Bm = B - centroid_B
H = torch.bmm(Am, Bm.transpose(1, 2))
# find rotation
U, S, Vt = torch.linalg.svd(H)
R = torch.bmm(Vt.transpose(1, 2), U.transpose(1, 2))
# reflection case
SS = torch.diag(torch.tensor([1., 1., -1.], device=A.device))
Rm = torch.bmm(Vt.transpose(1,2) @ SS, U.transpose(1, 2))
R = torch.where(torch.linalg.det(R)[:, None, None] < 0, Rm, R)
assert torch.all(torch.abs(torch.linalg.det(R) - 1) < 3e-3) # note I had to change this error bound to be higher
t = torch.bmm(-R, centroid_A) + centroid_B
return R, t
def rigid_transform_Kabsch_independent_torch(A, B):
# R = 3x3 rotation matrix, t = 3x1 column vector
# This already takes residue identity into account.
assert A.shape[1] == B.shape[1]
num_rows, num_cols = A.shape
if num_rows != 3:
raise Exception(f"matrix A is not 3xN, it is {num_rows}x{num_cols}")
num_rows, num_cols = B.shape
if num_rows != 3:
raise Exception(f"matrix B is not 3xN, it is {num_rows}x{num_cols}")
# find mean column wise: 3 x 1
centroid_A = torch.mean(A, axis=1, keepdims=True)
centroid_B = torch.mean(B, axis=1, keepdims=True)
# subtract mean
Am = A - centroid_A
Bm = B - centroid_B
H = Am @ Bm.T
# find rotation
U, S, Vt = torch.linalg.svd(H)
R = Vt.T @ U.T
# special reflection case
if torch.linalg.det(R) < 0:
# print("det(R) < R, reflection detected!, correcting for it ...")
SS = torch.diag(torch.tensor([1.,1.,-1.], device=A.device))
R = (Vt.T @ SS) @ U.T
assert math.fabs(torch.linalg.det(R) - 1) < 3e-3 # note I had to change this error bound to be higher
t = - centroid_A + centroid_B # note does not change rotation
R_vec = matrix_to_axis_angle(R)
return t, R_vec