libokj's picture
Upload 110 files
c0ec7e6
raw
history blame
2.03 kB
import torch
from torch import nn
import torch.nn.functional as F
from torch_geometric.nn import GCNConv, global_max_pool as gmp
class AttentionGCN(nn.Module):
"""
From `GraphDTA <https://doi.org/10.1093/bioinformatics/btaa921>`_ (Nguyen et al., 2020),
based on `Graph Convolutional Network <https://arxiv.org/abs/1609.02907>`_ (Kipf and Welling, 2017).
"""
def __init__(
self,
num_features: int,
out_channels: int,
dropout: float
):
super().__init__()
self.conv1 = GCNConv(num_features, num_features)
self.conv2 = GCNConv(num_features, num_features*2)
self.conv3 = GCNConv(num_features*2, num_features * 4)
self.fc_g1 = nn.Linear(num_features*4, 1024)
self.fc_g2 = nn.Linear(1024, out_channels)
self.relu = nn.ReLU()
self.dropout = nn.Dropout(dropout)
def forward(self, data):
# get graph input
x, edge_index, batch = data.x, data.edge_index, data.batch
x = self.conv1(x, edge_index)
x = self.relu(x)
x = self.conv2(x, edge_index)
x = self.relu(x)
x = self.conv3(x, edge_index)
x = self.relu(x)
x = gmp(x, batch) # global max pooling
# flatten
x = self.relu(self.fc_g1(x))
x = self.dropout(x)
x = self.fc_g2(x)
x = self.dropout(x)
return x
class Pocket_BCELoss(nn.Module):
def __init__(self):
super().__init__()
self.criterion = nn.BCELoss(reduce=False)
def forward(self, pred, label, seq_mask):
loss_all = self.criterion(pred, label)
loss = torch.sum(torch.masked_select(loss_all, seq_mask))
return loss
def protein_pred_module(self, prot_feature, seq_mask):
protein_emb = nn.Linear(self.hidden_size1, self.hidden_size1)
p_feature = F.leaky_relu(protein_emb(prot_feature), 0.1)
pocket_pred = torch.sigmoid(torch.masked_select(p_feature, seq_mask))
return pocket_pred