Spaces:
Sleeping
Sleeping
| from torch import nn | |
| from torch_geometric.nn import GCNConv, global_max_pool | |
| class GCN(nn.Module): | |
| """ | |
| From `GraphDTA <https://doi.org/10.1093/bioinformatics/btaa921>`_ (Nguyen et al., 2020), | |
| based on `Graph Convolutional Network <https://arxiv.org/abs/1609.02907>`_ (Kipf and Welling, 2017). | |
| """ | |
| def __init__( | |
| self, | |
| num_features: int, | |
| out_channels: int, | |
| dropout: float | |
| ): | |
| super().__init__() | |
| self.conv1 = GCNConv(num_features, num_features) | |
| self.conv2 = GCNConv(num_features, num_features*2) | |
| self.conv3 = GCNConv(num_features*2, num_features * 4) | |
| self.fc_g1 = nn.Linear(num_features*4, 1024) | |
| self.fc_g2 = nn.Linear(1024, out_channels) | |
| self.relu = nn.ReLU() | |
| self.dropout = nn.Dropout(dropout) | |
| def forward(self, data): | |
| # get graph input | |
| x, edge_index, batch = data.x, data.edge_index, data.batch | |
| x = self.conv1(x, edge_index) | |
| x = self.relu(x) | |
| x = self.conv2(x, edge_index) | |
| x = self.relu(x) | |
| x = self.conv3(x, edge_index) | |
| x = self.relu(x) | |
| x = global_max_pool(x, batch) # global max pooling | |
| # flatten | |
| x = self.relu(self.fc_g1(x)) | |
| x = self.dropout(x) | |
| x = self.fc_g2(x) | |
| x = self.dropout(x) | |
| return x | |