Spaces:
Sleeping
Sleeping
| from torch import nn | |
| import torch.nn.functional as F | |
| from torch_geometric.nn import GATConv | |
| from torch_geometric.nn import global_max_pool as gmp | |
| class GAT(nn.Module): | |
| r""" | |
| From `GraphDTA <https://doi.org/10.1093/bioinformatics/btaa921>`_ (Nguyen et al., 2020), | |
| based on `Graph Attention Network <https://arxiv.org/abs/1710.10903>`_ (Veličković et al., 2018). | |
| """ | |
| def __init__( | |
| self, | |
| num_features: int, | |
| out_channels: int, | |
| dropout: float | |
| ): | |
| super().__init__() | |
| self.dropout = dropout | |
| self.gcn1 = GATConv(num_features, num_features, heads=10, dropout=dropout) | |
| self.gcn2 = GATConv(num_features * 10, out_channels, dropout=dropout) | |
| self.fc_g1 = nn.Linear(out_channels, out_channels) | |
| self.relu = nn.ReLU() | |
| def forward(self, data): | |
| # graph input feed-forward | |
| x, edge_index, batch = data.x, data.edge_index, data.batch | |
| x = F.dropout(x, p=self.dropout, training=self.training) | |
| x = F.elu(self.gcn1(x, edge_index)) | |
| x = F.dropout(x, p=self.dropout, training=self.training) | |
| x = self.gcn2(x, edge_index) | |
| x = self.relu(x) | |
| x = gmp(x, batch) # global max pooling | |
| x = self.fc_g1(x) | |
| x = self.relu(x) | |
| return x | |