PubmedSearch / app.py
liang-huggingface's picture
Update app.py
180a8a2
import gradio as gr
import pandas as pd
from Bio import Entrez
import requests
import os
HF_API = os.getenv('HF_API')
openai_api_key = os.getenv('OPENAI_API')
PASSWORD = os.getenv('password')
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
if False:
# Load the model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto",trust_remote_code=True).eval()
def generate_summary(prompt):
# Add instructions to the prompt to signal that you want a summary
instructions = "Summarize the following text:"
prompt_with_instructions = f"{instructions}\n{prompt}"
# Tokenize the prompt text and return PyTorch tensors
inputs = tokenizer.encode(prompt_with_instructions, return_tensors="pt")
# Generate a response using the model
outputs = model.generate(inputs, max_length=512, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id)
# Decode the response
summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
return summary
def generate_response(prompt):
# Tokenize the prompt text and return PyTorch tensors
inputs = tokenizer.encode(prompt, return_tensors="pt")
# Generate a response using the model
outputs = model.generate(inputs, max_length=512, num_return_sequences=1)
# Decode the response
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
def search_pubmed_v2(query, retmax=5, mindate=None, maxdate=None, datetype="pdat"):
Entrez.email = 'your.email@example.com' # Always set the Entrez.email to tell NCBI who you are
search_kwargs = {
"db": "pubmed",
"term": query,
"retmax": retmax,
"sort": 'relevance',
"datetype": datetype
}
# If dates are provided, add them to the search arguments
if mindate:
search_kwargs["mindate"] = mindate
if maxdate:
search_kwargs["maxdate"] = maxdate
handle = Entrez.esearch(**search_kwargs)
record = Entrez.read(handle)
handle.close()
idlist = record['IdList']
handle = Entrez.efetch(db="pubmed", id=idlist, retmode="xml")
articles = Entrez.read(handle)['PubmedArticle']
handle.close()
# ... (the rest of your existing code to extract article information)
abstracts = []
for article in articles:
article_id = article['MedlineCitation']['PMID']
authors = ' '.join([author['LastName'] + ' ' + author.get('Initials', '')
for author in article['MedlineCitation']['Article'].get('AuthorList', [])]),
article_title = article['MedlineCitation']['Article']['ArticleTitle']
abstract_text = article['MedlineCitation']['Article'].get('Abstract', {}).get('AbstractText', [])
if isinstance(abstract_text, list):
# Join the list elements if abstract is a list
abstract_text = " ".join(abstract_text)
abstracts.append((article_id, authors, article_title, abstract_text))
return pd.DataFrame(abstracts)
# Function to search PubMed for articles
def search_pubmed(query, retmax=5, mindate=None, maxdate=None, datetype="pdat"):
Entrez.email = 'example@example.com'
search_kwargs = {
"db": "pubmed",
"term": query,
"retmax": retmax,
"sort": 'relevance',
"datetype": datetype
}
# If dates are provided, add them to the search arguments
if mindate:
search_kwargs["mindate"] = mindate
if maxdate:
search_kwargs["maxdate"] = maxdate
handle = Entrez.esearch(**search_kwargs)
record = Entrez.read(handle)
handle.close()
idlist = record['IdList']
handle = Entrez.efetch(db="pubmed", id=idlist, retmode="xml")
articles = Entrez.read(handle)['PubmedArticle']
handle.close()
article_list = []
for article in articles:
abstract_text = article['MedlineCitation']['Article'].get('Abstract', {}).get('AbstractText', [])
if isinstance(abstract_text, list):
# Join the list elements if abstract is a list
abstract_text = " ".join(abstract_text)
article_dict = {
'PMID': str(article['MedlineCitation']['PMID']),
'Authors': ' '.join([author['LastName'] + ' ' + author.get('Initials', '')
for author in article['MedlineCitation']['Article'].get('AuthorList', [])]),
'Title': article['MedlineCitation']['Article']['ArticleTitle'],
'Abstract': abstract_text,
}
article_list.append(article_dict)
return pd.DataFrame(article_list)
# Function to format search results for OpenAI summarization
def format_results_for_openai(table_data):
# Combine title and abstract for each record into one string for summarization
summaries = []
for _, row in table_data.iterrows():
summary = f"Title: {row['Title']}\nAuthors:{row['Authors']}\nAbstract: {row['Abstract']}\n"
summaries.append(summary)
print(summaries)
return "\n".join(summaries)
def get_summary_from_openai(text_to_summarize, openai_api_key):
headers = {
'Authorization': f'Bearer {openai_api_key}',
'Content-Type': 'application/json'
}
data = {
"model": "gpt-3.5-turbo", # Specify the GPT-3.5-turbo model
"messages": [{"role": "system", "content": '''Please summarize the following PubMed search results,
including the authors who conducted the research, the main research subject, and the major findings.
Please compare the difference among these articles.
Please return your results in a single paragraph in the regular scientific paper fashion for each article:'''},
{"role": "user", "content": text_to_summarize}],
}
response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data)
if response.status_code == 200:
summary = response.json().get('choices', [{}])[0].get('message', {'content':''}).get('content', '').strip()
return summary
else:
# Print the error message if the API call was unsuccessful
print(f"Error: {response.status_code}")
print(response.text)
return None
# Function that combines PubMed search with OpenAI summarization
def summarize_pubmed_search(search_results):
formatted_text = format_results_for_openai(search_results)
summary = get_summary_from_openai(formatted_text, openai_api_key) # Replace with your actual OpenAI API key
return summary
# Function to summarize articles using Hugging Face's API
def summarize_with_huggingface(model, selected_articles, password):
if password == PASSWORD:
summary = summarize_pubmed_search(selected_articles)
return summary
else:
API_URL = f"https://api-inference.huggingface.co/models/{model}"
# Your Hugging Face API key
API_KEY = HF_API
headers = {"Authorization": f"Bearer {API_KEY}"}
# Prepare the text to summarize: concatenate all abstracts
print(type(selected_articles))
print(selected_articles.to_dict(orient='records'))
text_to_summarize = " ".join(
[f"PMID: {article['PMID']}. Authors: {article['Authors']}. Title: {article['Title']}. Abstract: {article['Abstract']}."
for article in selected_articles.to_dict(orient='records')]
)
# Define the payload
payload = {
"inputs": text_to_summarize,
"parameters": {"max_length": 300} # Adjust as needed
}
USE_LOCAL=False
if USE_LOCAL:
response = generate_response(text_to_summarize)
else:
# Make the POST request to the Hugging Face API
response = requests.post(API_URL, headers=headers, json=payload)
response.raise_for_status() # Raise an HTTPError if the HTTP request returned an unsuccessful status code
# The API returns a list of dictionaries. We extract the summary from the first one.
return response.json()[0]['generated_text']
import gradio as gr
from Bio import Entrez
# Always tell NCBI who you are
Entrez.email = "your.email@example.com"
def process_query(keywords, top_k):
articles = search_pubmed(keywords, top_k)
# Convert each article from a dictionary to a list of values in the correct order
articles_for_display = [[article['pmid'], article['authors'], article['title'], article['abstract']] for article in articles]
return articles_for_display
def summarize_articles(indices, articles_for_display):
# Convert indices to a list of integers
selected_indices = [int(index.strip()) for index in indices.split(',') if index.strip().isdigit()]
# Convert the DataFrame to a list of dictionaries
articles_list = articles_for_display.to_dict(orient='records')
# Select articles based on the provided indices
selected_articles = [articles_list[index] for index in selected_indices]
# Generate the summary
summary = summarize_with_huggingface(selected_articles)
return summary
def check_password(username, password):
if username == USERNAME and password == PASSWORD:
return True, "Welcome!"
else:
return False, "Incorrect username or password."
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("### PubMed Article Summarizer")
with gr.Row():
password_input = gr.Textbox(label="Enter the password")
model_input = gr.Textbox(label="Enter the model to use", value="h2oai/h2ogpt-4096-llama2-7b-chat")
with gr.Row():
startdate = gr.Textbox(label="Starting year")
enddate = gr.Textbox(label="End year")
query_input = gr.Textbox(label="Query Keywords")
retmax_input = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of articles")
search_button = gr.Button("Search")
output_table = gr.Dataframe(headers=["PMID", "Authors", "Title","Abstract" ])
summarize_button = gr.Button("Summarize")
summary_output = gr.Textbox()
def update_output_table(query, retmax, startdate, enddate):
df = search_pubmed(query, retmax, startdate, enddate)
# output_table.update(value=df)
return df
search_button.click(update_output_table, inputs=[query_input, retmax_input, startdate, enddate], outputs=output_table)
summarize_button.click(fn=summarize_with_huggingface, inputs=[model_input, output_table, password_input], outputs=summary_output)
demo.launch(debug=True)
if False:
with gr.Blocks() as demo:
gr.Markdown("### PubMed Article Summarizer")
with gr.Row():
query_input = gr.Textbox(label="Query Keywords")
top_k_input = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Top K Results")
search_button = gr.Button("Search")
output_table = gr.Dataframe(headers=["Title", "Authors", "Abstract", "PMID"])
indices_input = gr.Textbox(label="Enter indices of articles to summarize (comma-separated)")
summarize_button = gr.Button("Summarize Selected Articles")
summary_output = gr.Textbox(label="Summary")
search_button.click(
fn=process_query,
inputs=[query_input, top_k_input],
outputs=output_table
)
summarize_button.click(
fn=summarize_articles,
inputs=[indices_input, output_table],
outputs=summary_output
)
demo.launch(auth=("user", "pass1234"), debug=True)