Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import pandas as pd | |
| from Bio import Entrez | |
| import requests | |
| import os | |
| HF_API = os.getenv('HF_API') | |
| openai_api_key = os.getenv('OPENAI_API') | |
| PASSWORD = os.getenv('password') | |
| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import torch | |
| if False: | |
| # Load the model and tokenizer | |
| tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B-Chat", trust_remote_code=True) | |
| model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B-Chat", device_map="auto",trust_remote_code=True).eval() | |
| def generate_summary(prompt): | |
| # Add instructions to the prompt to signal that you want a summary | |
| instructions = "Summarize the following text:" | |
| prompt_with_instructions = f"{instructions}\n{prompt}" | |
| # Tokenize the prompt text and return PyTorch tensors | |
| inputs = tokenizer.encode(prompt_with_instructions, return_tensors="pt") | |
| # Generate a response using the model | |
| outputs = model.generate(inputs, max_length=512, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id) | |
| # Decode the response | |
| summary = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return summary | |
| def generate_response(prompt): | |
| # Tokenize the prompt text and return PyTorch tensors | |
| inputs = tokenizer.encode(prompt, return_tensors="pt") | |
| # Generate a response using the model | |
| outputs = model.generate(inputs, max_length=512, num_return_sequences=1) | |
| # Decode the response | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return response | |
| def search_pubmed_v2(query, retmax=5, mindate=None, maxdate=None, datetype="pdat"): | |
| Entrez.email = 'your.email@example.com' # Always set the Entrez.email to tell NCBI who you are | |
| search_kwargs = { | |
| "db": "pubmed", | |
| "term": query, | |
| "retmax": retmax, | |
| "sort": 'relevance', | |
| "datetype": datetype | |
| } | |
| # If dates are provided, add them to the search arguments | |
| if mindate: | |
| search_kwargs["mindate"] = mindate | |
| if maxdate: | |
| search_kwargs["maxdate"] = maxdate | |
| handle = Entrez.esearch(**search_kwargs) | |
| record = Entrez.read(handle) | |
| handle.close() | |
| idlist = record['IdList'] | |
| handle = Entrez.efetch(db="pubmed", id=idlist, retmode="xml") | |
| articles = Entrez.read(handle)['PubmedArticle'] | |
| handle.close() | |
| # ... (the rest of your existing code to extract article information) | |
| abstracts = [] | |
| for article in articles: | |
| article_id = article['MedlineCitation']['PMID'] | |
| authors = ' '.join([author['LastName'] + ' ' + author.get('Initials', '') | |
| for author in article['MedlineCitation']['Article'].get('AuthorList', [])]), | |
| article_title = article['MedlineCitation']['Article']['ArticleTitle'] | |
| abstract_text = article['MedlineCitation']['Article'].get('Abstract', {}).get('AbstractText', []) | |
| if isinstance(abstract_text, list): | |
| # Join the list elements if abstract is a list | |
| abstract_text = " ".join(abstract_text) | |
| abstracts.append((article_id, authors, article_title, abstract_text)) | |
| return pd.DataFrame(abstracts) | |
| # Function to search PubMed for articles | |
| def search_pubmed(query, retmax=5, mindate=None, maxdate=None, datetype="pdat"): | |
| Entrez.email = 'example@example.com' | |
| search_kwargs = { | |
| "db": "pubmed", | |
| "term": query, | |
| "retmax": retmax, | |
| "sort": 'relevance', | |
| "datetype": datetype | |
| } | |
| # If dates are provided, add them to the search arguments | |
| if mindate: | |
| search_kwargs["mindate"] = mindate | |
| if maxdate: | |
| search_kwargs["maxdate"] = maxdate | |
| handle = Entrez.esearch(**search_kwargs) | |
| record = Entrez.read(handle) | |
| handle.close() | |
| idlist = record['IdList'] | |
| handle = Entrez.efetch(db="pubmed", id=idlist, retmode="xml") | |
| articles = Entrez.read(handle)['PubmedArticle'] | |
| handle.close() | |
| article_list = [] | |
| for article in articles: | |
| abstract_text = article['MedlineCitation']['Article'].get('Abstract', {}).get('AbstractText', []) | |
| if isinstance(abstract_text, list): | |
| # Join the list elements if abstract is a list | |
| abstract_text = " ".join(abstract_text) | |
| article_dict = { | |
| 'PMID': str(article['MedlineCitation']['PMID']), | |
| 'Authors': ' '.join([author['LastName'] + ' ' + author.get('Initials', '') | |
| for author in article['MedlineCitation']['Article'].get('AuthorList', [])]), | |
| 'Title': article['MedlineCitation']['Article']['ArticleTitle'], | |
| 'Abstract': abstract_text, | |
| } | |
| article_list.append(article_dict) | |
| return pd.DataFrame(article_list) | |
| # Function to format search results for OpenAI summarization | |
| def format_results_for_openai(table_data): | |
| # Combine title and abstract for each record into one string for summarization | |
| summaries = [] | |
| for _, row in table_data.iterrows(): | |
| summary = f"Title: {row['Title']}\nAuthors:{row['Authors']}\nAbstract: {row['Abstract']}\n" | |
| summaries.append(summary) | |
| print(summaries) | |
| return "\n".join(summaries) | |
| def get_summary_from_openai(text_to_summarize, openai_api_key): | |
| headers = { | |
| 'Authorization': f'Bearer {openai_api_key}', | |
| 'Content-Type': 'application/json' | |
| } | |
| data = { | |
| "model": "gpt-3.5-turbo", # Specify the GPT-3.5-turbo model | |
| "messages": [{"role": "system", "content": '''Please summarize the following PubMed search results, | |
| including the authors who conducted the research, the main research subject, and the major findings. | |
| Please compare the difference among these articles. | |
| Please return your results in a single paragraph in the regular scientific paper fashion for each article:'''}, | |
| {"role": "user", "content": text_to_summarize}], | |
| } | |
| response = requests.post('https://api.openai.com/v1/chat/completions', headers=headers, json=data) | |
| if response.status_code == 200: | |
| summary = response.json().get('choices', [{}])[0].get('message', {'content':''}).get('content', '').strip() | |
| return summary | |
| else: | |
| # Print the error message if the API call was unsuccessful | |
| print(f"Error: {response.status_code}") | |
| print(response.text) | |
| return None | |
| # Function that combines PubMed search with OpenAI summarization | |
| def summarize_pubmed_search(search_results): | |
| formatted_text = format_results_for_openai(search_results) | |
| summary = get_summary_from_openai(formatted_text, openai_api_key) # Replace with your actual OpenAI API key | |
| return summary | |
| # Function to summarize articles using Hugging Face's API | |
| def summarize_with_huggingface(model, selected_articles, password): | |
| if password == PASSWORD: | |
| summary = summarize_pubmed_search(selected_articles) | |
| return summary | |
| else: | |
| API_URL = f"https://api-inference.huggingface.co/models/{model}" | |
| # Your Hugging Face API key | |
| API_KEY = HF_API | |
| headers = {"Authorization": f"Bearer {API_KEY}"} | |
| # Prepare the text to summarize: concatenate all abstracts | |
| print(type(selected_articles)) | |
| print(selected_articles.to_dict(orient='records')) | |
| text_to_summarize = " ".join( | |
| [f"PMID: {article['PMID']}. Authors: {article['Authors']}. Title: {article['Title']}. Abstract: {article['Abstract']}." | |
| for article in selected_articles.to_dict(orient='records')] | |
| ) | |
| # Define the payload | |
| payload = { | |
| "inputs": text_to_summarize, | |
| "parameters": {"max_length": 300} # Adjust as needed | |
| } | |
| USE_LOCAL=False | |
| if USE_LOCAL: | |
| response = generate_response(text_to_summarize) | |
| else: | |
| # Make the POST request to the Hugging Face API | |
| response = requests.post(API_URL, headers=headers, json=payload) | |
| response.raise_for_status() # Raise an HTTPError if the HTTP request returned an unsuccessful status code | |
| # The API returns a list of dictionaries. We extract the summary from the first one. | |
| return response.json()[0]['generated_text'] | |
| import gradio as gr | |
| from Bio import Entrez | |
| # Always tell NCBI who you are | |
| Entrez.email = "your.email@example.com" | |
| def process_query(keywords, top_k): | |
| articles = search_pubmed(keywords, top_k) | |
| # Convert each article from a dictionary to a list of values in the correct order | |
| articles_for_display = [[article['pmid'], article['authors'], article['title'], article['abstract']] for article in articles] | |
| return articles_for_display | |
| def summarize_articles(indices, articles_for_display): | |
| # Convert indices to a list of integers | |
| selected_indices = [int(index.strip()) for index in indices.split(',') if index.strip().isdigit()] | |
| # Convert the DataFrame to a list of dictionaries | |
| articles_list = articles_for_display.to_dict(orient='records') | |
| # Select articles based on the provided indices | |
| selected_articles = [articles_list[index] for index in selected_indices] | |
| # Generate the summary | |
| summary = summarize_with_huggingface(selected_articles) | |
| return summary | |
| def check_password(username, password): | |
| if username == USERNAME and password == PASSWORD: | |
| return True, "Welcome!" | |
| else: | |
| return False, "Incorrect username or password." | |
| # Gradio interface | |
| with gr.Blocks() as demo: | |
| gr.Markdown("### PubMed Article Summarizer") | |
| with gr.Row(): | |
| password_input = gr.Textbox(label="Enter the password") | |
| model_input = gr.Textbox(label="Enter the model to use", value="h2oai/h2ogpt-4096-llama2-7b-chat") | |
| with gr.Row(): | |
| startdate = gr.Textbox(label="Starting year") | |
| enddate = gr.Textbox(label="End year") | |
| query_input = gr.Textbox(label="Query Keywords") | |
| retmax_input = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Number of articles") | |
| search_button = gr.Button("Search") | |
| output_table = gr.Dataframe(headers=["PMID", "Authors", "Title","Abstract" ]) | |
| summarize_button = gr.Button("Summarize") | |
| summary_output = gr.Textbox() | |
| def update_output_table(query, retmax, startdate, enddate): | |
| df = search_pubmed(query, retmax, startdate, enddate) | |
| # output_table.update(value=df) | |
| return df | |
| search_button.click(update_output_table, inputs=[query_input, retmax_input, startdate, enddate], outputs=output_table) | |
| summarize_button.click(fn=summarize_with_huggingface, inputs=[model_input, output_table, password_input], outputs=summary_output) | |
| demo.launch(debug=True) | |
| if False: | |
| with gr.Blocks() as demo: | |
| gr.Markdown("### PubMed Article Summarizer") | |
| with gr.Row(): | |
| query_input = gr.Textbox(label="Query Keywords") | |
| top_k_input = gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Top K Results") | |
| search_button = gr.Button("Search") | |
| output_table = gr.Dataframe(headers=["Title", "Authors", "Abstract", "PMID"]) | |
| indices_input = gr.Textbox(label="Enter indices of articles to summarize (comma-separated)") | |
| summarize_button = gr.Button("Summarize Selected Articles") | |
| summary_output = gr.Textbox(label="Summary") | |
| search_button.click( | |
| fn=process_query, | |
| inputs=[query_input, top_k_input], | |
| outputs=output_table | |
| ) | |
| summarize_button.click( | |
| fn=summarize_articles, | |
| inputs=[indices_input, output_table], | |
| outputs=summary_output | |
| ) | |
| demo.launch(auth=("user", "pass1234"), debug=True) |