liamvbetts's picture
searchable
caaf3b3
import gradio as gr
import random
import requests
from bs4 import BeautifulSoup
import os
NEWS_API_KEY = os.environ['NEWS_API_KEY']
HF_TOKEN = os.environ['HF_TOKEN']
def summarize(model_name, article):
API_URL = f"https://api-inference.huggingface.co/models/{model_name}"
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
payload = {"inputs": article}
response = requests.post(API_URL, headers=headers, json=payload)
if response.status_code == 200:
return format(response.json())
else:
if response.status_code == 401:
return "Error: Unauthorized. Check your API token."
elif response.status_code == 503:
return "Error: Service unavailable or model is currently loading."
else:
return f"{response} - Error: Encountered an issue (status code: {response.status_code}). Please try again."
return format(response.json())
def format(response):
return response[0]['generated_text']
def get_news_article(search_query):
if search_query.strip():
url = 'https://newsapi.org/v2/everything'
params = {
'apiKey': NEWS_API_KEY,
'q': search_query,
'pageSize': 100,
'language': 'en'
}
else:
url = 'https://newsapi.org/v2/top-headlines'
params = {
'apiKey': NEWS_API_KEY,
'country': 'us',
'pageSize': 100
}
response = requests.get(url, params=params)
articles = response.json().get('articles', [])
if articles:
random_article = random.choice(articles)
news_url = random_article.get('url')
else:
return None
if news_url:
full_article, title = scrape_article(news_url)
return full_article, title
else:
return "No news article found.", ""
def scrape_article(url):
try:
response = requests.get(url)
soup = BeautifulSoup(response.content, 'html.parser')
title = soup.title.string if soup.title else "No Title Available"
article_content = soup.find_all('p')
text = ' '.join([p.get_text() for p in article_content])
words = text.split()
truncated_text = ' '.join(words[:512])
return truncated_text, title
except Exception as e:
return "Error scraping article: " + str(e), ""
with gr.Blocks() as demo:
gr.Markdown("# News Summary App")
gr.Markdown("Enter a news text, search for news articles, or load a random article.")
with gr.Row():
with gr.Column():
search_query_input = gr.Textbox(label="Search for News", placeholder="Enter a topic to search...")
load_news_article_button = gr.Button("Search News Article")
article_title = gr.Label()
input_text = gr.Textbox(lines=10, label="Input Text", placeholder="Enter article text, load a random article, or search for news...")
with gr.Column():
model_name = gr.Dropdown(label="Model Name", choices=["liamvbetts/bart-news-summary-v1", "liamvbetts/bart-base-cnn-v1", "liamvbetts/bart-large-cnn-v2", "liamvbetts/bart-large-cnn-v4"], value="liamvbetts/bart-news-summary-v1")
summarize_button = gr.Button("Summarize")
output_text = gr.Textbox(label="Summary", placeholder="Summary will appear here...")
load_news_article_button.click(fn=get_news_article, inputs=[search_query_input], outputs=[input_text, article_title])
summarize_button.click(fn=summarize, inputs=[model_name, input_text], outputs=output_text)
demo.launch()