Spaces:
Sleeping
Sleeping
import gradio as gr | |
import random | |
import requests | |
from bs4 import BeautifulSoup | |
import os | |
NEWS_API_KEY = os.environ['NEWS_API_KEY'] | |
HF_TOKEN = os.environ['HF_TOKEN'] | |
def summarize(model_name, article): | |
API_URL = f"https://api-inference.huggingface.co/models/{model_name}" | |
headers = {"Authorization": f"Bearer {HF_TOKEN}"} | |
payload = {"inputs": article} | |
response = requests.post(API_URL, headers=headers, json=payload) | |
if response.status_code == 200: | |
return format(response.json()) | |
else: | |
if response.status_code == 401: | |
return "Error: Unauthorized. Check your API token." | |
elif response.status_code == 503: | |
return "Error: Service unavailable or model is currently loading." | |
else: | |
return f"{response} - Error: Encountered an issue (status code: {response.status_code}). Please try again." | |
return format(response.json()) | |
def format(response): | |
return response[0]['generated_text'] | |
def get_news_article(search_query): | |
if search_query.strip(): | |
url = 'https://newsapi.org/v2/everything' | |
params = { | |
'apiKey': NEWS_API_KEY, | |
'q': search_query, | |
'pageSize': 100, | |
'language': 'en' | |
} | |
else: | |
url = 'https://newsapi.org/v2/top-headlines' | |
params = { | |
'apiKey': NEWS_API_KEY, | |
'country': 'us', | |
'pageSize': 100 | |
} | |
response = requests.get(url, params=params) | |
articles = response.json().get('articles', []) | |
if articles: | |
random_article = random.choice(articles) | |
news_url = random_article.get('url') | |
else: | |
return None | |
if news_url: | |
full_article, title = scrape_article(news_url) | |
return full_article, title | |
else: | |
return "No news article found.", "" | |
def scrape_article(url): | |
try: | |
response = requests.get(url) | |
soup = BeautifulSoup(response.content, 'html.parser') | |
title = soup.title.string if soup.title else "No Title Available" | |
article_content = soup.find_all('p') | |
text = ' '.join([p.get_text() for p in article_content]) | |
words = text.split() | |
truncated_text = ' '.join(words[:512]) | |
return truncated_text, title | |
except Exception as e: | |
return "Error scraping article: " + str(e), "" | |
with gr.Blocks() as demo: | |
gr.Markdown("# News Summary App") | |
gr.Markdown("Enter a news text, search for news articles, or load a random article.") | |
with gr.Row(): | |
with gr.Column(): | |
search_query_input = gr.Textbox(label="Search for News", placeholder="Enter a topic to search...") | |
load_news_article_button = gr.Button("Search News Article") | |
article_title = gr.Label() | |
input_text = gr.Textbox(lines=10, label="Input Text", placeholder="Enter article text, load a random article, or search for news...") | |
with gr.Column(): | |
model_name = gr.Dropdown(label="Model Name", choices=["liamvbetts/bart-news-summary-v1", "liamvbetts/bart-base-cnn-v1", "liamvbetts/bart-large-cnn-v2", "liamvbetts/bart-large-cnn-v4"], value="liamvbetts/bart-news-summary-v1") | |
summarize_button = gr.Button("Summarize") | |
output_text = gr.Textbox(label="Summary", placeholder="Summary will appear here...") | |
load_news_article_button.click(fn=get_news_article, inputs=[search_query_input], outputs=[input_text, article_title]) | |
summarize_button.click(fn=summarize, inputs=[model_name, input_text], outputs=output_text) | |
demo.launch() |