|
""" |
|
|
|
Usage: |
|
python3 topic_clustering.py --in arena.json --english-only --min-length 32 |
|
python3 topic_clustering.py --in clean_conv_20230809_100k.json --english-only --min-length 32 --max-length 1536 |
|
""" |
|
import argparse |
|
import json |
|
import pickle |
|
import string |
|
import time |
|
|
|
import numpy as np |
|
from sentence_transformers import SentenceTransformer |
|
from sentence_transformers.util import cos_sim |
|
from sklearn.cluster import KMeans, AgglomerativeClustering |
|
import torch |
|
from tqdm import tqdm |
|
from openai import OpenAI |
|
|
|
from fastchat.utils import detect_language |
|
|
|
|
|
def remove_punctuation(input_string): |
|
|
|
translator = str.maketrans("", "", string.punctuation) |
|
|
|
|
|
no_punct = input_string.translate(translator) |
|
return no_punct |
|
|
|
|
|
def read_texts(input_file, min_length, max_length, english_only): |
|
visited = set() |
|
texts = [] |
|
|
|
lines = json.load(open(input_file, "r")) |
|
|
|
for l in tqdm(lines): |
|
if "text" in l: |
|
line_texts = [l["text"]] |
|
elif "conversation_a" in l: |
|
line_texts = [ |
|
x["content"] for x in l["conversation_a"] if x["role"] == "user" |
|
] |
|
elif "conversation" in l: |
|
line_texts = [ |
|
x["content"] for x in l["conversation"] if x["role"] == "user" |
|
] |
|
elif "turns" in l: |
|
line_texts = l["turns"] |
|
|
|
for text in line_texts: |
|
text = text.strip() |
|
|
|
|
|
if english_only: |
|
lang = detect_language(text) |
|
if lang != "English": |
|
continue |
|
|
|
|
|
if min_length: |
|
if len(text) < min_length: |
|
continue |
|
|
|
if max_length: |
|
if len(text) > max_length: |
|
continue |
|
|
|
|
|
words = sorted([x.lower() for x in remove_punctuation(text).split(" ")]) |
|
words = "".join(words) |
|
if words in visited: |
|
continue |
|
|
|
visited.add(words) |
|
texts.append(text) |
|
return np.array(texts) |
|
|
|
|
|
def get_embeddings(texts, model_name, batch_size): |
|
if model_name == "text-embedding-ada-002": |
|
client = OpenAI() |
|
texts = texts.tolist() |
|
|
|
embeddings = [] |
|
for i in tqdm(range(0, len(texts), batch_size)): |
|
text = texts[i : i + batch_size] |
|
responses = client.embeddings.create(input=text, model=model_name).data |
|
embeddings.extend([data.embedding for data in responses]) |
|
embeddings = torch.tensor(embeddings) |
|
else: |
|
model = SentenceTransformer(model_name) |
|
embeddings = model.encode( |
|
texts, |
|
batch_size=batch_size, |
|
show_progress_bar=True, |
|
device="cuda", |
|
convert_to_tensor=True, |
|
) |
|
|
|
embeddings = torch.nn.functional.normalize(embeddings, p=2, dim=1) |
|
return embeddings.cpu() |
|
|
|
|
|
def run_k_means(embeddings, num_clusters): |
|
np.random.seed(42) |
|
clustering_model = KMeans(n_clusters=num_clusters, n_init="auto") |
|
clustering_model.fit(embeddings.numpy()) |
|
centers = torch.from_numpy(clustering_model.cluster_centers_) |
|
labels = torch.from_numpy(clustering_model.labels_) |
|
|
|
|
|
classes, counts = np.unique(labels, return_counts=True) |
|
indices = np.argsort(counts)[::-1] |
|
classes = [classes[i] for i in indices] |
|
new_labels = torch.empty_like(labels) |
|
new_centers = torch.empty_like(centers) |
|
for i, c in enumerate(classes): |
|
new_labels[labels == c] = i |
|
new_centers[i] = centers[c] |
|
return new_centers, new_labels |
|
|
|
|
|
def run_agg_cluster(embeddings, num_clusters): |
|
np.random.seed(42) |
|
clustering_model = AgglomerativeClustering(n_clusters=num_clusters) |
|
clustering_model.fit(embeddings) |
|
labels = torch.from_numpy(clustering_model.labels_) |
|
|
|
|
|
classes, counts = np.unique(labels, return_counts=True) |
|
indices = np.argsort(counts)[::-1] |
|
classes = [classes[i] for i in indices] |
|
new_labels = torch.empty_like(labels) |
|
for i, c in enumerate(classes): |
|
new_labels[labels == c] = i |
|
|
|
|
|
centers = [] |
|
for i in range(len(classes)): |
|
centers.append(embeddings[new_labels == i].mean(axis=0, keepdim=True)) |
|
centers = torch.cat(centers) |
|
return centers, new_labels |
|
|
|
|
|
def run_hdbscan_cluster(embeddings): |
|
import hdbscan |
|
|
|
np.random.seed(42) |
|
clusterer = hdbscan.HDBSCAN(min_cluster_size=10) |
|
labels = torch.from_numpy(clusterer.fit_predict(embeddings)) |
|
|
|
|
|
classes, counts = np.unique(labels, return_counts=True) |
|
indices = np.argsort(counts)[::-1] |
|
classes = [classes[i] for i in indices] |
|
new_labels = torch.empty_like(labels) |
|
for i, c in enumerate(classes): |
|
new_labels[labels == c] = i |
|
|
|
|
|
centers = [] |
|
for i in range(len(classes)): |
|
centers.append(embeddings[new_labels == i].mean(axis=0, keepdim=True)) |
|
centers = torch.cat(centers) |
|
return centers, new_labels |
|
|
|
|
|
def get_topk_indices(centers, labels, embeddings, topk): |
|
indices = [] |
|
arange = torch.arange(len(labels)) |
|
counts = torch.unique(labels, return_counts=True)[1] |
|
topk = min(topk, counts.min().item()) |
|
for i in range(len(centers)): |
|
tmp_indices = labels == i |
|
tmp_arange = arange[tmp_indices] |
|
tmp_embeddings = embeddings[tmp_indices] |
|
|
|
scores = cos_sim(centers[i].unsqueeze(0), tmp_embeddings)[0] |
|
sorted_indices = torch.flip(torch.argsort(scores), dims=[0]) |
|
indices.append(tmp_arange[sorted_indices[:topk]].unsqueeze(0)) |
|
return torch.cat(indices) |
|
|
|
|
|
def print_topk(texts, labels, topk_indices, show_cut_off): |
|
ret = "" |
|
for k in range(len(topk_indices)): |
|
num_samples = torch.sum(labels == k).item() |
|
|
|
ret += "=" * 20 + f" cluster {k}, #samples: {num_samples} " + "=" * 20 + "\n" |
|
for idx in topk_indices[k]: |
|
ret += "PROMPT: " + texts[idx][:show_cut_off] + "\n" |
|
ret += "=" * 40 + "\n\n" |
|
|
|
return ret |
|
|
|
|
|
def get_cluster_info(texts, labels, topk_indices): |
|
np.random.seed(42) |
|
|
|
cluster_info = [] |
|
for k in range(len(topk_indices)): |
|
num_samples = torch.sum(labels == k).item() |
|
topk_prompts = [] |
|
for idx in topk_indices[k]: |
|
topk_prompts.append(texts[idx]) |
|
random_prompts = [] |
|
for idx in range(len(topk_indices)): |
|
random_prompts.append(np.random.choice(texts)) |
|
cluster_info.append((num_samples, topk_prompts, random_prompts)) |
|
|
|
return cluster_info |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--input-file", type=str, required=True) |
|
parser.add_argument("--model", type=str, default="all-mpnet-base-v2") |
|
|
|
|
|
parser.add_argument("--batch-size", type=int, default=256) |
|
parser.add_argument("--min-length", type=int) |
|
parser.add_argument("--max-length", type=int) |
|
parser.add_argument("--english-only", action="store_true") |
|
parser.add_argument("--num-clusters", type=int, default=20) |
|
parser.add_argument( |
|
"--cluster-alg", |
|
type=str, |
|
choices=["kmeans", "aggcls", "HDBSCAN"], |
|
default="kmeans", |
|
) |
|
parser.add_argument("--show-top-k", type=int, default=200) |
|
parser.add_argument("--show-cut-off", type=int, default=512) |
|
parser.add_argument("--save-embeddings", action="store_true") |
|
parser.add_argument("--embeddings-file", type=str, default=None) |
|
args = parser.parse_args() |
|
|
|
num_clusters = args.num_clusters |
|
show_top_k = args.show_top_k |
|
show_cut_off = args.show_cut_off |
|
|
|
texts = read_texts( |
|
args.input_file, args.min_length, args.max_length, args.english_only |
|
) |
|
print(f"#text: {len(texts)}") |
|
|
|
if args.embeddings_file is None: |
|
embeddings = get_embeddings(texts, args.model, args.batch_size) |
|
if args.save_embeddings: |
|
|
|
torch.save(embeddings, "embeddings.pt") |
|
else: |
|
embeddings = torch.load(args.embeddings_file) |
|
print(f"embeddings shape: {embeddings.shape}") |
|
|
|
if args.cluster_alg == "kmeans": |
|
centers, labels = run_k_means(embeddings, num_clusters) |
|
elif args.cluster_alg == "aggcls": |
|
centers, labels = run_agg_cluster(embeddings, num_clusters) |
|
elif args.cluster_alg == "HDBSCAN": |
|
centers, labels = run_hdbscan_cluster(embeddings) |
|
else: |
|
raise ValueError(f"Invalid clustering algorithm: {args.cluster_alg}") |
|
|
|
topk_indices = get_topk_indices(centers, labels, embeddings, args.show_top_k) |
|
topk_str = print_topk(texts, labels, topk_indices, args.show_cut_off) |
|
num_clusters = len(centers) |
|
|
|
|
|
filename_prefix = f"results_c{num_clusters}_{args.cluster_alg}" |
|
print(topk_str) |
|
with open(filename_prefix + "_topk.txt", "w") as fout: |
|
fout.write(topk_str) |
|
|
|
with open(filename_prefix + "_all.jsonl", "w") as fout: |
|
for i in range(len(centers)): |
|
tmp_indices = labels == i |
|
tmp_embeddings = embeddings[tmp_indices] |
|
tmp_texts = texts[tmp_indices] |
|
|
|
scores = cos_sim(centers[i].unsqueeze(0), tmp_embeddings)[0] |
|
sorted_indices = torch.flip(torch.argsort(scores), dims=[0]) |
|
|
|
for text, score in zip(tmp_texts[sorted_indices], scores[sorted_indices]): |
|
obj = {"cluster": i, "text": text, "sim": score.item()} |
|
fout.write(json.dumps(obj, ensure_ascii=False) + "\n") |
|
|
|
cluster_info = get_cluster_info(texts, labels, topk_indices) |
|
with open(filename_prefix + "_cluster.pkl", "wb") as fout: |
|
pickle.dump(cluster_info, fout) |
|
|