|
""" |
|
Apply the LoRA weights on top of a base model. |
|
|
|
Usage: |
|
python3 -m fastchat.model.apply_lora --base ~/model_weights/llama-7b --target ~/model_weights/baize-7b --lora project-baize/baize-lora-7B |
|
|
|
Dependency: |
|
pip3 install git+https://github.com/huggingface/peft.git@2822398fbe896f25d4dac5e468624dc5fd65a51b |
|
""" |
|
import argparse |
|
|
|
import torch |
|
from peft import PeftModel |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
|
|
def apply_lora(base_model_path, target_model_path, lora_path): |
|
print(f"Loading the base model from {base_model_path}") |
|
base = AutoModelForCausalLM.from_pretrained( |
|
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True |
|
) |
|
base_tokenizer = AutoTokenizer.from_pretrained(base_model_path, use_fast=False) |
|
|
|
print(f"Loading the LoRA adapter from {lora_path}") |
|
|
|
lora_model = PeftModel.from_pretrained( |
|
base, |
|
lora_path, |
|
|
|
) |
|
|
|
print("Applying the LoRA") |
|
model = lora_model.merge_and_unload() |
|
|
|
print(f"Saving the target model to {target_model_path}") |
|
model.save_pretrained(target_model_path) |
|
base_tokenizer.save_pretrained(target_model_path) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("--base-model-path", type=str, required=True) |
|
parser.add_argument("--target-model-path", type=str, required=True) |
|
parser.add_argument("--lora-path", type=str, required=True) |
|
|
|
args = parser.parse_args() |
|
|
|
apply_lora(args.base_model_path, args.target_model_path, args.lora_path) |
|
|