Spaces:
Running
on
Zero
Running
on
Zero
import time | |
import gradio as gr | |
import io | |
import pandas as pd | |
import spaces | |
from generate import stream_file | |
def stream_output(filename: str): | |
if filename.endswith(".jsonl"): | |
filename = filename[:-len(".jsonl")] | |
content = "" | |
size=3 | |
start_time = time.time() | |
for i, chunk in enumerate(stream_file( | |
filename=filename, | |
prompt="", | |
columns=[], | |
seed=42, | |
size=size, | |
)): | |
content += chunk | |
df = pd.read_json(io.StringIO(content), lines=True) | |
state_msg = ( | |
f"β Done generating {size} samples in {time.time() - start_time:.2f}s" | |
if i + 1 == size else | |
f"βοΈ Generating... [{i + 1}/{size}]" | |
) | |
yield df, "```json\n" + content + "\n```", state_msg | |
def test(filename: str): | |
if not filename.endswith(".jsonl"): | |
yield "β 404: File name must end with .jsonl", None, "" | |
return | |
content = "" | |
size = 10 | |
start_time = time.time() | |
for i in range(size): | |
content += f'{{"i": {i}, "filename": "{filename}"}}\n' | |
df = pd.read_json(io.StringIO(content), lines=True) | |
state_msg = ( | |
f"β Done generating {size} samples in {time.time() - start_time:.2f}s" | |
if i + 1 == size else | |
f"βοΈ Generating... [{i + 1}/{size}]" | |
) | |
yield df, "```json\n" + content + "\n```", state_msg | |
time.sleep(0.1) | |
title = "LLM DataGen" | |
description = "Generate and stream synthetic dataset files in JSON Lines format" | |
examples = [ | |
"movies_data.jsonl", | |
"common_first_names.jsonl", | |
"bad_amazon_reviews_on_defunct_products_that_people_hate.jsonl", | |
"dungeon_and_dragon_characters.jsonl" | |
] | |
with gr.Blocks() as demo: | |
gr.Markdown(f"# {title}") | |
gr.Markdown(description) | |
filename_comp = gr.Textbox(examples[0], placeholder=examples[0]) | |
gr.Examples(examples, filename_comp) | |
generate_button = gr.Button("Generate dataset") | |
state_msg_comp = gr.Markdown("π₯ Ready to generate") | |
with gr.Tab("Dataset"): | |
dataframe_comp = gr.DataFrame() | |
with gr.Tab("File content"): | |
with gr.Blocks(fill_height=True): | |
with gr.Row(): | |
file_content_comp = gr.Markdown() | |
generate_button.click(stream_output, filename_comp, [dataframe_comp, file_content_comp, state_msg_comp]) | |
demo.launch() | |