|
from abc import ABC, abstractmethod |
|
from concurrent.futures import ThreadPoolExecutor |
|
from typing import Any, Dict, List, Union |
|
|
|
import gradio as gr |
|
|
|
import ai |
|
|
|
|
|
class Component(ABC): |
|
def __init__(self, id_: int): |
|
|
|
self._id = id_ |
|
self._source = self.__class__.__name__ |
|
self.vname: str |
|
|
|
|
|
self.component_id: gr.Number |
|
self.gr_component: Union[gr.Box, gr.Textbox] |
|
self.output: gr.Textbox |
|
self.visible: gr.Number |
|
|
|
def render(self) -> None: |
|
self.component_id = gr.Number(value=self._id, visible=False) |
|
self.visible = gr.Number(0, visible=False) |
|
self.gr_component = self._render(self._id) |
|
|
|
@abstractmethod |
|
def _render(self, id_: int) -> Union[gr.Box, gr.Textbox]: |
|
... |
|
|
|
|
|
class Input(Component): |
|
vname = "v" |
|
|
|
def _render(self, id_: int) -> gr.Textbox: |
|
self.output = gr.Textbox( |
|
label=f"Input: {{{self.vname}{id_}}}", |
|
interactive=True, |
|
placeholder="Variable value", |
|
visible=False, |
|
) |
|
return self.output |
|
|
|
|
|
class TaskComponent(ABC): |
|
vname = "t" |
|
|
|
def __init__(self): |
|
self.name: str |
|
self.gr_component: gr.Box |
|
self.input: gr.Textbox |
|
self.output: gr.Textbox |
|
self._source = self.__class__.__name__ |
|
|
|
def render(self, id_: int) -> None: |
|
self.gr_component = self._render(id_) |
|
|
|
@property |
|
@abstractmethod |
|
def inputs(self) -> List[gr.Textbox]: |
|
... |
|
|
|
@property |
|
def n_inputs(self) -> int: |
|
return len(self.inputs) |
|
|
|
@abstractmethod |
|
def _render(self, id_) -> gr.Box: |
|
... |
|
|
|
@abstractmethod |
|
def execute(self, *args, vars_in_scope: Dict[str, Any]): |
|
... |
|
|
|
|
|
class AITask(TaskComponent): |
|
name = "AI Task" |
|
|
|
def _render(self, id_: int) -> gr.Box: |
|
with gr.Box(visible=False) as gr_component: |
|
gr.Markdown("Send a message to ChatGPT.") |
|
with gr.Row(): |
|
self.input = gr.Textbox( |
|
label="Prompt", |
|
lines=10, |
|
interactive=True, |
|
placeholder="Example: summarize this text: {v0}", |
|
) |
|
self.output = gr.Textbox( |
|
label=f"Output: {{{self.vname}{id_}}}", |
|
lines=10, |
|
interactive=True, |
|
) |
|
return gr_component |
|
|
|
@property |
|
def inputs(self) -> List[gr.Textbox]: |
|
return [self.input] |
|
|
|
def execute(self, prompt: str, vars_in_scope: Dict[str, Any]) -> str: |
|
formatted_prompt = prompt.format(**vars_in_scope) |
|
return ai.llm.next([{"role": "user", "content": formatted_prompt}]) |
|
|
|
|
|
class CodeTask(TaskComponent): |
|
name = "Code Task" |
|
|
|
def _render(self, id_: int) -> gr.Column: |
|
with gr.Column(visible=False) as gr_component: |
|
code_prompt = gr.Textbox( |
|
label="What would you like to do?", |
|
interactive=True, |
|
) |
|
generate_code = gr.Button("Generate code") |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Accordion(label="Generated code", open=False): |
|
raw_prompt_output = gr.Textbox( |
|
label="Raw output", |
|
lines=5, |
|
interactive=True, |
|
) |
|
self.packages = gr.Textbox( |
|
label="The following packages will be installed", |
|
interactive=True, |
|
) |
|
self.function = gr.Textbox( |
|
label="Code to be executed", |
|
lines=10, |
|
interactive=True, |
|
) |
|
error_message = gr.HighlightedText(value=None, visible=False) |
|
|
|
self.input = gr.Textbox( |
|
label="Input to the code", |
|
interactive=True, |
|
) |
|
with gr.Column(): |
|
self.output = gr.Textbox( |
|
label=f"Output: {{{self.vname}{id_}}}", |
|
lines=10, |
|
interactive=True, |
|
) |
|
|
|
generate_code.click( |
|
self.generate_code, |
|
inputs=[code_prompt], |
|
outputs=[ |
|
raw_prompt_output, |
|
self.packages, |
|
self.function, |
|
error_message, |
|
], |
|
) |
|
|
|
return gr_component |
|
|
|
@staticmethod |
|
def generate_code(code_prompt: str): |
|
raw_prompt_output = "" |
|
packages = "" |
|
function = "" |
|
error_message = gr.HighlightedText.update(None, visible=False) |
|
|
|
if not code_prompt: |
|
return ( |
|
raw_prompt_output, |
|
packages, |
|
function, |
|
error_message, |
|
) |
|
|
|
print(f"Generating code.") |
|
try: |
|
raw_prompt_output = ai.llm.next( |
|
[ |
|
{ |
|
"role": "user", |
|
"content": f""" |
|
Write a python function for the following request: |
|
{code_prompt} |
|
|
|
Do't save anything to disk. Instead, the function should return the necessary data. |
|
Include all the necessary imports. |
|
""", |
|
} |
|
], |
|
temperature=0, |
|
) |
|
|
|
def llm_call(prompt): |
|
return ai.llm.next([{"role": "user", "content": prompt}], temperature=0) |
|
|
|
with ThreadPoolExecutor(max_workers=2) as executor: |
|
packages, function = tuple( |
|
executor.map( |
|
llm_call, |
|
[ |
|
f""" |
|
The following text should have a python function with some imports that might need to be installed: |
|
{raw_prompt_output} |
|
|
|
Extract all the python packages, nothing else. Print them in a single python list that can be used with eval(). |
|
""", |
|
f""" |
|
The following text should have a python function and some imports: |
|
{raw_prompt_output} |
|
|
|
Exclusively extract the function and the imports, nothing else, so that it can be used with exec(). |
|
""", |
|
], |
|
) |
|
) |
|
except Exception as e: |
|
error_message = gr.HighlightedText.update( |
|
value=[(str(e), "ERROR")], visible=True |
|
) |
|
return ( |
|
raw_prompt_output, |
|
packages, |
|
function, |
|
error_message, |
|
) |
|
|
|
@property |
|
def inputs(self) -> List[gr.Textbox]: |
|
return [self.packages, self.function, self.input] |
|
|
|
def execute( |
|
self, packages: str, function: str, input: str, vars_in_scope: Dict[str, Any] |
|
): |
|
import subprocess |
|
import sys |
|
|
|
for p in eval(packages): |
|
subprocess.check_call([sys.executable, "-m", "pip", "install", p]) |
|
__import__(p) |
|
exec(function, locals()) |
|
self._toolkit_func = list(locals().items())[-1][1] |
|
|
|
formatted_input = input.format(**vars_in_scope) |
|
return self._toolkit_func(formatted_input) |
|
|
|
|
|
class Task(Component): |
|
available_tasks = [AITask, CodeTask] |
|
vname = "t" |
|
|
|
def __init__(self, id_: int): |
|
super().__init__(id_) |
|
self._inner_tasks = [t() for t in self.available_tasks] |
|
self.gr_component: gr.Box |
|
|
|
def _render(self, id_: int) -> gr.Box: |
|
with gr.Box(visible=False) as gr_component: |
|
self.active_index = gr.Dropdown( |
|
[AITask.name, CodeTask.name], |
|
label="Pick a new Task", |
|
type="index", |
|
) |
|
for t in self._inner_tasks: |
|
t.render(id_) |
|
|
|
self.active_index.select( |
|
self.pick_task, |
|
inputs=[self.active_index], |
|
outputs=[t.gr_component for t in self._inner_tasks], |
|
) |
|
return gr_component |
|
|
|
@staticmethod |
|
def pick_task(idx: int) -> List[Dict]: |
|
update = [gr.Box.update(visible=False)] * len(Task.available_tasks) |
|
update[idx] = gr.Box.update(visible=True) |
|
return update |
|
|
|
@property |
|
def inputs(self) -> List[gr.Textbox]: |
|
return [i for t in self._inner_tasks for i in t.inputs] |
|
|
|
@property |
|
def outputs(self) -> List[gr.Textbox]: |
|
return [t.output for t in self._inner_tasks] |
|
|
|
@property |
|
def inner_n_inputs(self) -> List[int]: |
|
return [t.n_inputs for t in self._inner_tasks] |
|
|
|
def execute(self, active_index, *args, vars_in_scope: Dict[str, Any]): |
|
inner_task = self._inner_tasks[active_index] |
|
print(f"Executing {self._source}: {self._id}") |
|
return inner_task.execute(*args, vars_in_scope) |
|
|
|
|
|
MAX_TASKS = 10 |
|
|
|
all_tasks = {i: Task(i) for i in range(MAX_TASKS)} |
|
|
|
|
|
class Tasks: |
|
@classmethod |
|
def visibilities(cls) -> List[gr.Number]: |
|
return [t.visible for t in all_tasks.values()] |
|
|
|
@classmethod |
|
def active_indexes(cls) -> List[gr.Dropdown]: |
|
return [t.active_index for t in all_tasks.values()] |
|
|
|
@classmethod |
|
def gr_components(cls) -> List[gr.Box]: |
|
return [t.gr_component for t in all_tasks.values()] |
|
|