Spaces:
Runtime error
Runtime error
import gradio as gr | |
import ai | |
import ai_tasks | |
import code_tasks | |
import custom_code | |
def open__get_text_from_url() -> str: | |
with open("code_tasks/text_in_url.py") as f: | |
return f.read() | |
def open__get_images_from_url() -> str: | |
with open("code_tasks/images_in_url.py") as f: | |
return f.read() | |
def open__get_image_infos() -> str: | |
with open("custom_code/image_analysis.py") as f: | |
return f.read() | |
def get_text_and_images_from_url(url): | |
return ( | |
code_tasks.text_in_url.get_text_from_url(url), | |
code_tasks.images_in_url.get_images_from_url(url), | |
) | |
def get_images_analysis(images): | |
return custom_code.image_analysis.analyze_images(eval(images)) | |
def summarize_text( | |
prompt, | |
url, | |
dimensions, | |
text, | |
images, | |
image_infos, | |
summary, | |
headline, | |
): | |
return ai_tasks.text_summary._summarize_text( | |
prompt, | |
url=url, | |
dimensions=dimensions, | |
text=text, | |
images=images, | |
image_infos=image_infos, | |
summary=summary, | |
headline=headline, | |
) | |
def get_headline_for_image( | |
prompt, | |
url, | |
dimensions, | |
text, | |
images, | |
image_infos, | |
summary, | |
headline, | |
): | |
import json | |
output = ai_tasks.headlines_for_images._get_headline_for_image( | |
prompt, | |
url=url, | |
dimensions=dimensions, | |
text=text, | |
images=images, | |
image_infos=image_infos, | |
summary=summary, | |
headline=headline, | |
) | |
return output, json.loads(output)["image_url"] | |
def get_headline_and_prompt( | |
prompt, | |
url, | |
dimensions, | |
text, | |
images, | |
image_infos, | |
summary, | |
headline, | |
): | |
import json | |
output = ai_tasks.headlines_for_ai_images._generate_headline_and_prompt( | |
prompt, | |
url=url, | |
dimensions=dimensions, | |
text=text, | |
images=images, | |
image_infos=image_infos, | |
summary=summary, | |
headline=headline, | |
) | |
output_dict = json.loads(output) | |
return ( | |
output, | |
output_dict["ai_prompt"], | |
output_dict["ai_prompt"], | |
output_dict["dimension_to_map"], | |
output_dict["dimension_to_map"], | |
) | |
def generate_image(prompt, dimensions): | |
return ai.image.urls(prompt, 1, dimensions)[0] | |
with gr.Blocks() as demo: | |
gr.Markdown( | |
""" | |
## Scrape a website and get an ad | |
Enter an url and the dimensions for an image (eg, 300x600). | |
<br> A sequence of code and AI tasks will scrape the website and find an image that best fits those dimensions. They will also generate an AI image. | |
<br> It's your job to edit either of those images. | |
<br> A headline for your ad will also be generated. | |
<br> Play around with the AI tasks to get different results. Text in between {} are variables that you have access to. | |
""" | |
) | |
url = gr.Textbox(label="Input: {url}") | |
dimensions = gr.Textbox(label="Input: {dimensions}") | |
execute = gr.Button("Run") | |
with gr.Box(): | |
gr.Markdown("Code task") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Textbox( | |
"write a python function that given an url returns all text in the website", | |
label="ChatGPT-4 prompt", | |
) | |
with gr.Accordion("Input: {url}", open=False): | |
gr.Code(open__get_text_from_url(), "python") | |
with gr.Column(): | |
text = gr.Textbox( | |
label="Output: {text}", lines=10, max_lines=10, interactive=False | |
) | |
with gr.Box(): | |
gr.Markdown("Code task") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Textbox( | |
"write a python function that given an url returns all images in the website", | |
label="ChatGPT-4 prompt", | |
) | |
with gr.Accordion("Input: {url}", open=False): | |
gr.Code(open__get_images_from_url(), "python") | |
with gr.Column(): | |
images = gr.Textbox( | |
label="Output: {images}", lines=10, max_lines=10, interactive=False | |
) | |
with gr.Box(): | |
gr.Markdown("Custom code: analyze images with Google Vision") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Accordion("Input: {images}", open=False): | |
gr.Code(open__get_image_infos(), "python") | |
with gr.Column(): | |
image_infos = gr.Textbox( | |
label="Output: {image_infos}", | |
lines=10, | |
max_lines=10, | |
interactive=False, | |
) | |
with gr.Box(): | |
gr.Markdown("AI task: summarize text") | |
with gr.Row(): | |
with gr.Column(): | |
summary_prompt = gr.Textbox( | |
ai_tasks.text_summary.PROMPT, | |
label="Instructions:", | |
interactive=True, | |
) | |
with gr.Column(): | |
summary = gr.Textbox( | |
label="Output: {summary}", lines=10, max_lines=10, interactive=False | |
) | |
with gr.Box(): | |
gr.Markdown("AI task: generate headline for image") | |
with gr.Row(): | |
with gr.Column(): | |
headline_prompt = gr.Textbox( | |
ai_tasks.headlines_for_images.PROMPT, | |
label="Instructions:", | |
interactive=True, | |
lines=20, | |
) | |
with gr.Column(): | |
headline = gr.Textbox( | |
label="Output: {headline}", | |
lines=10, | |
max_lines=10, | |
interactive=False, | |
) | |
headline_image = gr.Image(interactive=False) | |
with gr.Box(): | |
gr.Markdown("AI task: generate headline and prompt for image") | |
with gr.Row(): | |
with gr.Column(): | |
ai_prompt_prompt = gr.Textbox( | |
ai_tasks.headlines_for_ai_images.PROMPT, | |
label="Instructions:", | |
interactive=True, | |
) | |
with gr.Column(): | |
headline_and_prompt = gr.Textbox( | |
label="Output: {headline_prompt}", | |
lines=20, | |
max_lines=20, | |
interactive=False, | |
) | |
dimension_to_map = gr.Textbox( | |
label="Output: {dimension_to_map}", | |
interactive=False, | |
) | |
ai_prompt = gr.Textbox( | |
label="Output: {ai_prompt}", | |
interactive=False, | |
) | |
with gr.Box(): | |
gr.Markdown("AI task: generate image") | |
with gr.Row(): | |
with gr.Column(): | |
ai_image_prompt = gr.Textbox( | |
label="Instructions: {ai_prompt}", | |
interactive=False, | |
) | |
image_dimensions = gr.Textbox( | |
label="Input: {dimension_to_map}", | |
interactive=False, | |
) | |
with gr.Column(): | |
ai_image = gr.Image() | |
vars_ = [ | |
url, | |
dimensions, | |
text, | |
images, | |
image_infos, | |
summary, | |
headline, | |
] | |
execute.click( | |
get_text_and_images_from_url, inputs=[url], outputs=[text, images] | |
).success( | |
get_images_analysis, | |
inputs=[images], | |
outputs=[image_infos], | |
).success( | |
summarize_text, | |
inputs=[summary_prompt] + vars_, # type: ignore | |
outputs=[summary], | |
).success( | |
get_headline_for_image, | |
inputs=[headline_prompt] + vars_, # type: ignore | |
outputs=[headline, headline_image], | |
).success( | |
get_headline_and_prompt, | |
inputs=[ai_prompt_prompt] + vars_, # type: ignore | |
outputs=[ | |
headline_and_prompt, | |
ai_prompt, | |
ai_image_prompt, | |
dimension_to_map, | |
image_dimensions, | |
], | |
).success( | |
generate_image, inputs=[ai_image_prompt, image_dimensions], outputs=[ai_image] | |
) | |
demo.launch() | |