lfoppiano commited on
Commit
e8ebf39
β€’
1 Parent(s): b3d12e4

first commit

Browse files
.env ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GROBID_URL=https://lfoppiano-grobid.hf.space
2
+ PROMPTLAYER_API_KEY=pl_89d0213d12cde8162f75c4da00e74094
3
+
4
+ HTTP_PROXY=
5
+ http_proxy=
6
+ HTTPS_PROXY=
7
+ https_proxy=
8
+ NO_PROXY=
9
+ no_proxy=
10
+ REQUEST_CA_BUNDLE=
11
+ REQUESTS_CA_BUNDLE=
12
+ CURL_CA_BUNDLE=
.github/workflows/ci-build.yml ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ name: Build unstable
2
+
3
+ on: [push]
4
+
5
+ concurrency:
6
+ group: unstable
7
+ # cancel-in-progress: true
8
+
9
+
10
+ jobs:
11
+ build:
12
+ runs-on: ubuntu-latest
13
+
14
+ steps:
15
+ - uses: actions/checkout@v2
16
+ - name: Set up Python 3.9
17
+ uses: actions/setup-python@v2
18
+ with:
19
+ python-version: "3.9"
20
+ - name: Install dependencies
21
+ run: |
22
+ python -m pip install --upgrade pip
23
+ pip install --upgrade flake8 pytest pycodestyle
24
+ if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
25
+ - name: Lint with flake8
26
+ run: |
27
+ # stop the build if there are Python syntax errors or undefined names
28
+ flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
29
+ # exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
30
+ flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
31
+ # - name: Test with pytest
32
+ # run: |
33
+ # pytest
34
+
35
+ docker-build-documentqa:
36
+ needs: [build]
37
+
38
+ runs-on: self-hosted
39
+
40
+ steps:
41
+ - uses: actions/checkout@v2
42
+ - name: Build the Docker image
43
+ run: docker build . --file Dockerfile.qa --tag lfoppiano/documentqa:develop-latest
44
+ - name: Cleanup older than 24h images and containers
45
+ run: docker system prune --filter "until=24h" --force
.gitignore ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ .idea
2
+ .env
3
+ .env.docker
4
+ **/**/.chroma
5
+ grobid_magneto/reverse_qa/.chroma
6
+ exploration_llm
7
+ resources/db
.streamlit/config.toml ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ [logger]
2
+ level = "info"
3
+
4
+ [browser]
5
+ gatherUsageStats = false
Dockerfile ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.9-slim
2
+
3
+ WORKDIR /app
4
+
5
+ RUN apt-get update && apt-get install -y \
6
+ build-essential \
7
+ curl \
8
+ software-properties-common \
9
+ git \
10
+ && rm -rf /var/lib/apt/lists/*
11
+
12
+ COPY requirements.txt .
13
+
14
+ RUN pip3 install -r requirements.txt --trusted-host pypi.org --trusted-host pypi.python.org --trusted-host=files.pythonhosted.org
15
+
16
+ COPY grobid_magneto/ grobid_magneto
17
+ COPY commons/ commons
18
+ COPY resources/nims_proxy.cer .
19
+ COPY tiktoken_cache ./tiktoken_cache
20
+ COPY grobid_magneto/document_qa/.streamlit ./.streamlit
21
+
22
+ # extract version
23
+ COPY .git ./.git
24
+ RUN git rev-parse --short HEAD > revision.txt
25
+ RUN rm -rf ./.git
26
+
27
+ EXPOSE 8501
28
+
29
+ HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
30
+
31
+ ENV PYTHONPATH "${PYTHONPATH}:."
32
+
33
+ ENTRYPOINT ["streamlit", "run", "document_qa/streamlit_app.py", "--server.port=8501", "--server.address=0.0.0.0"]
README.md CHANGED
@@ -1 +1,3 @@
1
- # document-qa
 
 
 
1
+ # DocumentIQA: Document Insight Question/Answer
2
+
3
+ Small demo for performing data extraction at document level using small context.
document_qa_engine.py ADDED
@@ -0,0 +1,251 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import os
3
+ from pathlib import Path
4
+ from typing import Union, Any
5
+
6
+ from grobid_client.grobid_client import GrobidClient
7
+ from langchain.chains import create_extraction_chain
8
+ from langchain.chains.question_answering import load_qa_chain
9
+ from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
10
+ from langchain.retrievers import MultiQueryRetriever
11
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
12
+ from langchain.vectorstores import Chroma
13
+ from tqdm import tqdm
14
+
15
+ from commons.annotations_utils import GrobidProcessor
16
+
17
+
18
+ class DocumentQAEngine:
19
+ llm = None
20
+ qa_chain_type = None
21
+ embedding_function = None
22
+ embeddings_dict = {}
23
+ embeddings_map_from_md5 = {}
24
+ embeddings_map_to_md5 = {}
25
+
26
+ def __init__(self, llm, embedding_function, qa_chain_type="stuff", embeddings_root_path=None, grobid_url=None):
27
+ self.embedding_function = embedding_function
28
+ self.llm = llm
29
+ self.chain = load_qa_chain(llm, chain_type=qa_chain_type)
30
+
31
+ if embeddings_root_path is not None:
32
+ self.embeddings_root_path = embeddings_root_path
33
+ if not os.path.exists(embeddings_root_path):
34
+ os.makedirs(embeddings_root_path)
35
+ else:
36
+ self.load_embeddings(self.embeddings_root_path)
37
+
38
+ if grobid_url:
39
+ self.grobid_url = grobid_url
40
+ grobid_client = GrobidClient(
41
+ grobid_server=self.grobid_url,
42
+ batch_size=1000,
43
+ coordinates=["p"],
44
+ sleep_time=5,
45
+ timeout=60,
46
+ check_server=True
47
+ )
48
+ self.grobid_processor = GrobidProcessor(grobid_client)
49
+
50
+ def load_embeddings(self, embeddings_root_path: Union[str, Path]) -> None:
51
+ """
52
+ Load the embeddings assuming they are all persisted and stored in a single directory.
53
+ The root path of the embeddings containing one data store for each document in each subdirectory
54
+ """
55
+
56
+ embeddings_directories = [f for f in os.scandir(embeddings_root_path) if f.is_dir()]
57
+
58
+ if len(embeddings_directories) == 0:
59
+ print("No available embeddings")
60
+ return
61
+
62
+ for embedding_document_dir in embeddings_directories:
63
+ self.embeddings_dict[embedding_document_dir.name] = Chroma(persist_directory=embedding_document_dir.path,
64
+ embedding_function=self.embedding_function)
65
+
66
+ filename_list = list(Path(embedding_document_dir).glob('*.storage_filename'))
67
+ if filename_list:
68
+ filenam = filename_list[0].name.replace(".storage_filename", "")
69
+ self.embeddings_map_from_md5[embedding_document_dir.name] = filenam
70
+ self.embeddings_map_to_md5[filenam] = embedding_document_dir.name
71
+
72
+ print("Embedding loaded: ", len(self.embeddings_dict.keys()))
73
+
74
+ def get_loaded_embeddings_ids(self):
75
+ return list(self.embeddings_dict.keys())
76
+
77
+ def get_md5_from_filename(self, filename):
78
+ return self.embeddings_map_to_md5[filename]
79
+
80
+ def get_filename_from_md5(self, md5):
81
+ return self.embeddings_map_from_md5[md5]
82
+
83
+ def query_document(self, query: str, doc_id, output_parser=None, context_size=4, extraction_schema=None,
84
+ verbose=False) -> (
85
+ Any, str):
86
+ # self.load_embeddings(self.embeddings_root_path)
87
+
88
+ if verbose:
89
+ print(query)
90
+
91
+ response = self._run_query(doc_id, query, context_size=context_size)
92
+ response = response['output_text'] if 'output_text' in response else response
93
+
94
+ if verbose:
95
+ print(doc_id, "->", response)
96
+
97
+ if output_parser:
98
+ try:
99
+ return self._parse_json(response, output_parser), response
100
+ except Exception as oe:
101
+ print("Failing to parse the response", oe)
102
+ return None, response
103
+ elif extraction_schema:
104
+ try:
105
+ chain = create_extraction_chain(extraction_schema, self.llm)
106
+ parsed = chain.run(response)
107
+ return parsed, response
108
+ except Exception as oe:
109
+ print("Failing to parse the response", oe)
110
+ return None, response
111
+ else:
112
+ return None, response
113
+
114
+ def query_storage(self, query: str, doc_id, context_size=4):
115
+ documents = self._get_context(doc_id, query, context_size)
116
+
117
+ context_as_text = [doc.page_content for doc in documents]
118
+ return context_as_text
119
+
120
+ def _parse_json(self, response, output_parser):
121
+ system_message = "You are an useful assistant expert in materials science, physics, and chemistry " \
122
+ "that can process text and transform it to JSON."
123
+ human_message = """Transform the text between three double quotes in JSON.\n\n\n\n
124
+ {format_instructions}\n\nText: \"\"\"{text}\"\"\""""
125
+
126
+ system_message_prompt = SystemMessagePromptTemplate.from_template(system_message)
127
+ human_message_prompt = HumanMessagePromptTemplate.from_template(human_message)
128
+
129
+ prompt_template = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
130
+
131
+ results = self.llm(
132
+ prompt_template.format_prompt(
133
+ text=response,
134
+ format_instructions=output_parser.get_format_instructions()
135
+ ).to_messages()
136
+ )
137
+ parsed_output = output_parser.parse(results.content)
138
+
139
+ return parsed_output
140
+
141
+ def _run_query(self, doc_id, query, context_size=4):
142
+ relevant_documents = self._get_context(doc_id, query, context_size)
143
+ return self.chain.run(input_documents=relevant_documents, question=query)
144
+ # return self.chain({"input_documents": relevant_documents, "question": prompt_chat_template}, return_only_outputs=True)
145
+
146
+ def _get_context(self, doc_id, query, context_size=4):
147
+ db = self.embeddings_dict[doc_id]
148
+ retriever = db.as_retriever(search_kwargs={"k": context_size})
149
+ relevant_documents = retriever.get_relevant_documents(query)
150
+ return relevant_documents
151
+
152
+ def get_all_context_by_document(self, doc_id):
153
+ db = self.embeddings_dict[doc_id]
154
+ docs = db.get()
155
+ return docs['documents']
156
+
157
+ def _get_context_multiquery(self, doc_id, query, context_size=4):
158
+ db = self.embeddings_dict[doc_id].as_retriever(search_kwargs={"k": context_size})
159
+ multi_query_retriever = MultiQueryRetriever.from_llm(retriever=db, llm=self.llm)
160
+ relevant_documents = multi_query_retriever.get_relevant_documents(query)
161
+ return relevant_documents
162
+
163
+ def get_text_from_document(self, pdf_file_path, chunk_size=-1, perc_overlap=0.1, verbose=False):
164
+ if verbose:
165
+ print("File", pdf_file_path)
166
+ filename = Path(pdf_file_path).stem
167
+ structure = self.grobid_processor.process_structure(pdf_file_path)
168
+
169
+ biblio = structure['biblio']
170
+ biblio['filename'] = filename.replace(" ", "_")
171
+
172
+ if verbose:
173
+ print("Generating embeddings for:", hash, ", filename: ", filename)
174
+
175
+ texts = []
176
+ metadatas = []
177
+ ids = []
178
+ if chunk_size < 0:
179
+ for passage in structure['passages']:
180
+ biblio_copy = copy.copy(biblio)
181
+ if len(str.strip(passage['text'])) > 0:
182
+ texts.append(passage['text'])
183
+
184
+ biblio_copy['type'] = passage['type']
185
+ biblio_copy['section'] = passage['section']
186
+ biblio_copy['subSection'] = passage['subSection']
187
+ metadatas.append(biblio_copy)
188
+
189
+ ids.append(passage['passage_id'])
190
+ else:
191
+ document_text = " ".join([passage['text'] for passage in structure['passages']])
192
+ # text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
193
+ text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
194
+ chunk_size=chunk_size,
195
+ chunk_overlap=chunk_size * perc_overlap
196
+ )
197
+ texts = text_splitter.split_text(document_text)
198
+ metadatas = [biblio for _ in range(len(texts))]
199
+ ids = [id for id, t in enumerate(texts)]
200
+
201
+ return texts, metadatas, ids
202
+
203
+ def create_memory_embeddings(self, pdf_path, doc_id=None):
204
+ texts, metadata, ids = self.get_text_from_document(pdf_path, chunk_size=500, perc_overlap=0.1)
205
+ if doc_id:
206
+ hash = doc_id
207
+ else:
208
+ hash = metadata[0]['hash']
209
+
210
+ self.embeddings_dict[hash] = Chroma.from_texts(texts, embedding=self.embedding_function, metadatas=metadata)
211
+ self.embeddings_root_path = None
212
+
213
+ return hash
214
+
215
+ def create_embeddings(self, pdfs_dir_path: Path):
216
+ input_files = []
217
+ for root, dirs, files in os.walk(pdfs_dir_path, followlinks=False):
218
+ for file_ in files:
219
+ if not (file_.lower().endswith(".pdf")):
220
+ continue
221
+ input_files.append(os.path.join(root, file_))
222
+
223
+ for input_file in tqdm(input_files, total=len(input_files), unit='document',
224
+ desc="Grobid + embeddings processing"):
225
+
226
+ md5 = self.calculate_md5(input_file)
227
+ data_path = os.path.join(self.embeddings_root_path, md5)
228
+
229
+ if os.path.exists(data_path):
230
+ print(data_path, "exists. Skipping it ")
231
+ continue
232
+
233
+ texts, metadata, ids = self.get_text_from_document(input_file, chunk_size=500, perc_overlap=0.1)
234
+ filename = metadata[0]['filename']
235
+
236
+ vector_db_document = Chroma.from_texts(texts,
237
+ metadatas=metadata,
238
+ embedding=self.embedding_function,
239
+ persist_directory=data_path)
240
+ vector_db_document.persist()
241
+
242
+ with open(os.path.join(data_path, filename + ".storage_filename"), 'w') as fo:
243
+ fo.write("")
244
+
245
+ @staticmethod
246
+ def calculate_md5(input_file: Union[Path, str]):
247
+ import hashlib
248
+ md5_hash = hashlib.md5()
249
+ with open(input_file, 'rb') as fi:
250
+ md5_hash.update(fi.read())
251
+ return md5_hash.hexdigest().upper()
requirements.txt ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ grobid-quantities-client
2
+ scikit-learn
3
+ Flask
4
+ openai
5
+ tqdm
6
+ textdistance[extras]
7
+ grobid-client-python
8
+ grobid_tei_xml
9
+ BeautifulSoup4
10
+ grobid-quantities-client
11
+ pymongo
12
+ pyyaml
13
+ waitress
14
+ apiflask
15
+ dateparser
16
+ tiktoken
17
+ pytest
18
+ langchain==0.0.244
19
+ streamlit
20
+ lxml
21
+ Beautifulsoup4
22
+ python-dotenv
23
+ lxml
24
+ Beautifulsoup4
25
+ python-dotenv
26
+ chromadb==0.3.25
27
+ promptlayer
28
+ watchdog
29
+ typing-inspect==0.8.0
30
+ typing_extensions==4.5.0
31
+ pydantic==1.10.8
streamlit_app.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from datetime import datetime
3
+ from hashlib import blake2b
4
+ from tempfile import NamedTemporaryFile
5
+
6
+ import dotenv
7
+ import streamlit as st
8
+ from langchain.chat_models import PromptLayerChatOpenAI
9
+ from langchain.embeddings import OpenAIEmbeddings
10
+
11
+ from document_qa_engine import DocumentQAEngine
12
+
13
+ dotenv.load_dotenv(override=True)
14
+
15
+ if 'rqa' not in st.session_state:
16
+ st.session_state['rqa'] = None
17
+
18
+ if 'openai_key' not in st.session_state:
19
+ st.session_state['openai_key'] = False
20
+
21
+ if 'doc_id' not in st.session_state:
22
+ st.session_state['doc_id'] = None
23
+
24
+ if 'loaded_embeddings' not in st.session_state:
25
+ st.session_state['loaded_embeddings'] = None
26
+
27
+ if 'hash' not in st.session_state:
28
+ st.session_state['hash'] = None
29
+
30
+ if 'git_rev' not in st.session_state:
31
+ st.session_state['git_rev'] = "unknown"
32
+ if os.path.exists("revision.txt"):
33
+ with open("revision.txt", 'r') as fr:
34
+ from_file = fr.read()
35
+ st.session_state['git_rev'] = from_file if len(from_file) > 0 else "unknown"
36
+
37
+ if "messages" not in st.session_state:
38
+ st.session_state.messages = []
39
+
40
+
41
+ def new_file():
42
+ st.session_state['loaded_embeddings'] = None
43
+ st.session_state['doc_id'] = None
44
+
45
+
46
+ @st.cache_resource
47
+ def init_qa(openai_api_key):
48
+ chat = PromptLayerChatOpenAI(model_name="gpt-3.5-turbo",
49
+ temperature=0,
50
+ return_pl_id=True,
51
+ pl_tags=["streamlit", "chatgpt"],
52
+ openai_api_key=openai_api_key)
53
+ # chat = ChatOpenAI(model_name="gpt-3.5-turbo",
54
+ # temperature=0)
55
+ return DocumentQAEngine(chat, OpenAIEmbeddings(openai_api_key=openai_api_key), grobid_url=os.environ['GROBID_URL'])
56
+
57
+
58
+ def get_file_hash(fname):
59
+ hash_md5 = blake2b()
60
+ with open(fname, "rb") as f:
61
+ for chunk in iter(lambda: f.read(4096), b""):
62
+ hash_md5.update(chunk)
63
+ return hash_md5.hexdigest()
64
+
65
+
66
+ def play_old_messages():
67
+ if st.session_state['messages']:
68
+ for message in st.session_state['messages']:
69
+ if message['role'] == 'user':
70
+ with st.chat_message("user"):
71
+ st.markdown(message['content'])
72
+ elif message['role'] == 'assistant':
73
+ with st.chat_message("assistant"):
74
+ if mode == "LLM":
75
+ st.markdown(message['content'])
76
+ else:
77
+ st.write(message['content'])
78
+
79
+
80
+ has_openai_api_key = False
81
+ if not st.session_state['openai_key']:
82
+ openai_api_key = st.sidebar.text_input('OpenAI API Key')
83
+ if openai_api_key:
84
+ st.session_state['openai_key'] = has_openai_api_key = True
85
+ st.session_state['rqa'] = init_qa(openai_api_key)
86
+ else:
87
+ has_openai_api_key = st.session_state['openai_key']
88
+
89
+ st.title("πŸ“ Document insight Q&A")
90
+ st.subheader("Upload a PDF document, ask questions, get insights.")
91
+
92
+ upload_col, radio_col, context_col = st.columns([7, 2, 2])
93
+ with upload_col:
94
+ uploaded_file = st.file_uploader("Upload an article", type=("pdf", "txt"), on_change=new_file,
95
+ disabled=not has_openai_api_key,
96
+ help="The file will be uploaded to Grobid, extracted the text and calculated "
97
+ "embeddings of each paragraph which are then stored to a Db for be picked "
98
+ "to answer specific questions. ")
99
+ with radio_col:
100
+ mode = st.radio("Query mode", ("LLM", "Embeddings"), disabled=not uploaded_file, index=0,
101
+ help="LLM will respond the question, Embedding will show the "
102
+ "paragraphs relevant to the question in the paper.")
103
+ with context_col:
104
+ context_size = st.slider("Context size", 3, 10, value=4,
105
+ help="Number of paragraphs to consider when answering a question",
106
+ disabled=not uploaded_file)
107
+
108
+ question = st.chat_input(
109
+ "Ask something about the article",
110
+ # placeholder="Can you give me a short summary?",
111
+ disabled=not uploaded_file
112
+ )
113
+
114
+ with st.sidebar:
115
+ st.header("Documentation")
116
+ st.write("""To upload the PDF file, click on the designated button and select the file from your device.""")
117
+
118
+ st.write(
119
+ """After uploading, please wait for the PDF to be processed. You will see a spinner or loading indicator while the processing is in progress. Once the spinner stops, you can proceed to ask your questions.""")
120
+
121
+ st.markdown("**Revision number**: [" + st.session_state[
122
+ 'git_rev'] + "](https://github.com/lfoppiano/grobid-magneto/commit/" + st.session_state['git_rev'] + ")")
123
+
124
+ st.header("Query mode (Advanced use)")
125
+ st.write(
126
+ """By default, the mode is set to LLM (Language Model) which enables question/answering. You can directly ask questions related to the PDF content, and the system will provide relevant answers.""")
127
+
128
+ st.write(
129
+ """If you switch the mode to "Embedding," the system will return specific paragraphs from the document that are semantically similar to your query. This mode focuses on providing relevant excerpts rather than answering specific questions.""")
130
+
131
+ if uploaded_file and not st.session_state.loaded_embeddings:
132
+ with st.spinner('Reading file, calling Grobid, and creating memory embeddings...'):
133
+ binary = uploaded_file.getvalue()
134
+ tmp_file = NamedTemporaryFile()
135
+ tmp_file.write(bytearray(binary))
136
+ # hash = get_file_hash(tmp_file.name)[:10]
137
+ st.session_state['doc_id'] = hash = st.session_state['rqa'].create_memory_embeddings(tmp_file.name)
138
+ st.session_state['loaded_embeddings'] = True
139
+
140
+ # timestamp = datetime.utcnow()
141
+
142
+ if st.session_state.loaded_embeddings and question and len(question) > 0 and st.session_state.doc_id:
143
+ for message in st.session_state.messages:
144
+ with st.chat_message(message["role"]):
145
+ if message['mode'] == "LLM":
146
+ st.markdown(message["content"])
147
+ elif message['mode'] == "Embeddings":
148
+ st.write(message["content"])
149
+
150
+ text_response = None
151
+ if mode == "Embeddings":
152
+ text_response = st.session_state['rqa'].query_storage(question, st.session_state.doc_id,
153
+ context_size=context_size)
154
+ elif mode == "LLM":
155
+ _, text_response = st.session_state['rqa'].query_document(question, st.session_state.doc_id,
156
+ context_size=context_size)
157
+
158
+ if not text_response:
159
+ st.error("Something went wrong. Contact Luca Foppiano (Foppiano.Luca@nims.co.jp) to report the issue.")
160
+
161
+ with st.chat_message("user"):
162
+ st.markdown(question)
163
+ st.session_state.messages.append({"role": "user", "mode": mode, "content": question})
164
+
165
+ with st.chat_message("assistant"):
166
+ if mode == "LLM":
167
+ st.markdown(text_response)
168
+ else:
169
+ st.write(text_response)
170
+ st.session_state.messages.append({"role": "assistant", "mode": mode, "content": text_response})
171
+
172
+ elif st.session_state.loaded_embeddings and st.session_state.doc_id:
173
+ play_old_messages()