Spaces:
Running
Running
revert default model, use additional environ variable to default it
Browse files- streamlit_app.py +13 -7
streamlit_app.py
CHANGED
@@ -225,7 +225,9 @@ with st.sidebar:
|
|
225 |
st.session_state['model'] = model = st.selectbox(
|
226 |
"Model:",
|
227 |
options=OPENAI_MODELS + list(OPEN_MODELS.keys()),
|
228 |
-
index=OPENAI_MODELS.index(
|
|
|
|
|
229 |
placeholder="Select model",
|
230 |
help="Select the LLM model:",
|
231 |
disabled=st.session_state['doc_id'] is not None or st.session_state['uploaded']
|
@@ -313,8 +315,8 @@ with st.sidebar:
|
|
313 |
disabled=uploaded_file is not None)
|
314 |
if chunk_size == -1:
|
315 |
context_size = st.slider("Context size", 3, 20, value=10,
|
316 |
-
|
317 |
-
|
318 |
else:
|
319 |
context_size = st.slider("Context size", 3, 10, value=4,
|
320 |
help="Number of chunks to consider when answering a question",
|
@@ -363,17 +365,20 @@ if uploaded_file and not st.session_state.loaded_embeddings:
|
|
363 |
|
364 |
# timestamp = datetime.utcnow()
|
365 |
|
|
|
366 |
def rgb_to_hex(rgb):
|
367 |
return "#{:02x}{:02x}{:02x}".format(*rgb)
|
368 |
|
|
|
369 |
def generate_color_gradient(num_elements):
|
370 |
# Define warm and cold colors in RGB format
|
371 |
warm_color = (255, 165, 0) # Orange
|
372 |
-
cold_color = (0, 0, 255)
|
373 |
|
374 |
# Generate a linear gradient of colors
|
375 |
color_gradient = [
|
376 |
-
rgb_to_hex(tuple(int(warm * (1 - i/num_elements) + cold * (i/num_elements)) for warm, cold in
|
|
|
377 |
for i in range(num_elements)
|
378 |
]
|
379 |
|
@@ -427,7 +432,7 @@ with right_column:
|
|
427 |
context_size=context_size)
|
428 |
annotations = [
|
429 |
GrobidAggregationProcessor.box_to_dict(coo) for coo in [c.split(",") for coord in
|
430 |
-
|
431 |
]
|
432 |
gradients = generate_color_gradient(len(annotations))
|
433 |
for i, color in enumerate(gradients):
|
@@ -465,6 +470,7 @@ with right_column:
|
|
465 |
with left_column:
|
466 |
if st.session_state['binary']:
|
467 |
if st.session_state['should_show_annotations']:
|
468 |
-
pdf_viewer(input=st.session_state['binary'], width=600, height=800,
|
|
|
469 |
else:
|
470 |
pdf_viewer(input=st.session_state['binary'], width=600, height=800)
|
|
|
225 |
st.session_state['model'] = model = st.selectbox(
|
226 |
"Model:",
|
227 |
options=OPENAI_MODELS + list(OPEN_MODELS.keys()),
|
228 |
+
index=(OPENAI_MODELS + list(OPEN_MODELS.keys())).index(
|
229 |
+
"zephyr-7b-beta") if "DEFAULT_MODEL" not in os.environ or not os.environ["DEFAULT_MODEL"] else (
|
230 |
+
OPENAI_MODELS + list(OPEN_MODELS.keys())).index(os.environ["DEFAULT_MODEL"]),
|
231 |
placeholder="Select model",
|
232 |
help="Select the LLM model:",
|
233 |
disabled=st.session_state['doc_id'] is not None or st.session_state['uploaded']
|
|
|
315 |
disabled=uploaded_file is not None)
|
316 |
if chunk_size == -1:
|
317 |
context_size = st.slider("Context size", 3, 20, value=10,
|
318 |
+
help="Number of paragraphs to consider when answering a question",
|
319 |
+
disabled=not uploaded_file)
|
320 |
else:
|
321 |
context_size = st.slider("Context size", 3, 10, value=4,
|
322 |
help="Number of chunks to consider when answering a question",
|
|
|
365 |
|
366 |
# timestamp = datetime.utcnow()
|
367 |
|
368 |
+
|
369 |
def rgb_to_hex(rgb):
|
370 |
return "#{:02x}{:02x}{:02x}".format(*rgb)
|
371 |
|
372 |
+
|
373 |
def generate_color_gradient(num_elements):
|
374 |
# Define warm and cold colors in RGB format
|
375 |
warm_color = (255, 165, 0) # Orange
|
376 |
+
cold_color = (0, 0, 255) # Blue
|
377 |
|
378 |
# Generate a linear gradient of colors
|
379 |
color_gradient = [
|
380 |
+
rgb_to_hex(tuple(int(warm * (1 - i / num_elements) + cold * (i / num_elements)) for warm, cold in
|
381 |
+
zip(warm_color, cold_color)))
|
382 |
for i in range(num_elements)
|
383 |
]
|
384 |
|
|
|
432 |
context_size=context_size)
|
433 |
annotations = [
|
434 |
GrobidAggregationProcessor.box_to_dict(coo) for coo in [c.split(",") for coord in
|
435 |
+
coordinates for c in coord]
|
436 |
]
|
437 |
gradients = generate_color_gradient(len(annotations))
|
438 |
for i, color in enumerate(gradients):
|
|
|
470 |
with left_column:
|
471 |
if st.session_state['binary']:
|
472 |
if st.session_state['should_show_annotations']:
|
473 |
+
pdf_viewer(input=st.session_state['binary'], width=600, height=800,
|
474 |
+
annotations=st.session_state['annotations'])
|
475 |
else:
|
476 |
pdf_viewer(input=st.session_state['binary'], width=600, height=800)
|