document-qa / document_qa /document_qa_engine.py
lfoppiano's picture
Merge branch 'main' into question-coefficient
88c017f
raw
history blame
22.9 kB
import copy
import os
from pathlib import Path
from typing import Union, Any, Optional, List, Dict, Tuple, ClassVar, Collection
import tiktoken
from langchain.chains import create_extraction_chain
from langchain.chains.question_answering import load_qa_chain, stuff_prompt, refine_prompts, map_reduce_prompt, \
map_rerank_prompt
from langchain.prompts import SystemMessagePromptTemplate, HumanMessagePromptTemplate, ChatPromptTemplate
from langchain.retrievers import MultiQueryRetriever
from langchain.schema import Document
from langchain_community.vectorstores.chroma import Chroma, DEFAULT_K
from langchain_community.vectorstores.faiss import FAISS
from langchain_core.callbacks import CallbackManagerForRetrieverRun
from langchain_core.utils import xor_args
from langchain_core.vectorstores import VectorStore, VectorStoreRetriever
from tqdm import tqdm
from document_qa.grobid_processors import GrobidProcessor
def _results_to_docs_scores_and_embeddings(results: Any) -> List[Tuple[Document, float, List[float]]]:
return [
(Document(page_content=result[0], metadata=result[1] or {}), result[2], result[3])
for result in zip(
results["documents"][0],
results["metadatas"][0],
results["distances"][0],
results["embeddings"][0],
)
]
class TextMerger:
"""
This class tries to replicate the RecursiveTextSplitter from LangChain, to preserve and merge the
coordinate information from the PDF document.
"""
def __init__(self, model_name=None, encoding_name="gpt2"):
if model_name is not None:
self.enc = tiktoken.encoding_for_model(model_name)
else:
self.enc = tiktoken.get_encoding(encoding_name)
def encode(self, text, allowed_special=set(), disallowed_special="all"):
return self.enc.encode(
text,
allowed_special=allowed_special,
disallowed_special=disallowed_special,
)
def merge_passages(self, passages, chunk_size, tolerance=0.2):
new_passages = []
new_coordinates = []
current_texts = []
current_coordinates = []
for idx, passage in enumerate(passages):
text = passage['text']
coordinates = passage['coordinates']
current_texts.append(text)
current_coordinates.append(coordinates)
accumulated_text = " ".join(current_texts)
encoded_accumulated_text = self.encode(accumulated_text)
if len(encoded_accumulated_text) > chunk_size + chunk_size * tolerance:
if len(current_texts) > 1:
new_passages.append(current_texts[:-1])
new_coordinates.append(current_coordinates[:-1])
current_texts = [current_texts[-1]]
current_coordinates = [current_coordinates[-1]]
else:
new_passages.append(current_texts)
new_coordinates.append(current_coordinates)
current_texts = []
current_coordinates = []
elif chunk_size <= len(encoded_accumulated_text) < chunk_size + chunk_size * tolerance:
new_passages.append(current_texts)
new_coordinates.append(current_coordinates)
current_texts = []
current_coordinates = []
if len(current_texts) > 0:
new_passages.append(current_texts)
new_coordinates.append(current_coordinates)
new_passages_struct = []
for i, passages in enumerate(new_passages):
text = " ".join(passages)
coordinates = ";".join(new_coordinates[i])
new_passages_struct.append(
{
"text": text,
"coordinates": coordinates,
"type": "aggregated chunks",
"section": "mixed",
"subSection": "mixed"
}
)
return new_passages_struct
class BaseRetrieval:
def __init__(
self,
persist_directory: Path,
embedding_function
):
self.embedding_function = embedding_function
self.persist_directory = persist_directory
class AdvancedVectorStoreRetriever(VectorStoreRetriever):
allowed_search_types: ClassVar[Collection[str]] = (
"similarity",
"similarity_score_threshold",
"mmr",
"similarity_with_embeddings"
)
def _get_relevant_documents(
self, query: str, *, run_manager: CallbackManagerForRetrieverRun
) -> List[Document]:
if self.search_type == "similarity":
docs = self.vectorstore.similarity_search(query, **self.search_kwargs)
elif self.search_type == "similarity_score_threshold":
docs_and_similarities = (
self.vectorstore.similarity_search_with_relevance_scores(
query, **self.search_kwargs
)
)
for doc, similarity in docs_and_similarities:
if '__similarity' not in doc.metadata.keys():
doc.metadata['__similarity'] = similarity
docs = [doc for doc, _ in docs_and_similarities]
elif self.search_type == "mmr":
docs = self.vectorstore.max_marginal_relevance_search(
query, **self.search_kwargs
)
elif self.search_type == "similarity_with_embeddings":
docs_scores_and_embeddings = (
self.vectorstore.advanced_similarity_search(
query, **self.search_kwargs
)
)
for doc, score, embeddings in docs_scores_and_embeddings:
if '__embeddings' not in doc.metadata.keys():
doc.metadata['__embeddings'] = embeddings
if '__similarity' not in doc.metadata.keys():
doc.metadata['__similarity'] = score
docs = [doc for doc, _, _ in docs_scores_and_embeddings]
else:
raise ValueError(f"search_type of {self.search_type} not allowed.")
return docs
class AdvancedVectorStore(VectorStore):
def as_retriever(self, **kwargs: Any) -> AdvancedVectorStoreRetriever:
tags = kwargs.pop("tags", None) or []
tags.extend(self._get_retriever_tags())
return AdvancedVectorStoreRetriever(vectorstore=self, **kwargs, tags=tags)
class ChromaAdvancedRetrieval(Chroma, AdvancedVectorStore):
def __init__(self, **kwargs):
super().__init__(**kwargs)
@xor_args(("query_texts", "query_embeddings"))
def __query_collection(
self,
query_texts: Optional[List[str]] = None,
query_embeddings: Optional[List[List[float]]] = None,
n_results: int = 4,
where: Optional[Dict[str, str]] = None,
where_document: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Document]:
"""Query the chroma collection."""
try:
import chromadb # noqa: F401
except ImportError:
raise ValueError(
"Could not import chromadb python package. "
"Please install it with `pip install chromadb`."
)
return self._collection.query(
query_texts=query_texts,
query_embeddings=query_embeddings,
n_results=n_results,
where=where,
where_document=where_document,
**kwargs,
)
def advanced_similarity_search(
self,
query: str,
k: int = DEFAULT_K,
filter: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> [List[Document], float, List[float]]:
docs_scores_and_embeddings = self.similarity_search_with_scores_and_embeddings(query, k, filter=filter)
return docs_scores_and_embeddings
def similarity_search_with_scores_and_embeddings(
self,
query: str,
k: int = DEFAULT_K,
filter: Optional[Dict[str, str]] = None,
where_document: Optional[Dict[str, str]] = None,
**kwargs: Any,
) -> List[Tuple[Document, float, List[float]]]:
if self._embedding_function is None:
results = self.__query_collection(
query_texts=[query],
n_results=k,
where=filter,
where_document=where_document,
include=['metadatas', 'documents', 'embeddings', 'distances']
)
else:
query_embedding = self._embedding_function.embed_query(query)
results = self.__query_collection(
query_embeddings=[query_embedding],
n_results=k,
where=filter,
where_document=where_document,
include=['metadatas', 'documents', 'embeddings', 'distances']
)
return _results_to_docs_scores_and_embeddings(results)
class FAISSAdvancedRetrieval(FAISS):
pass
class NER_Retrival(VectorStore):
"""
This class implement a retrieval based on NER models.
This is an alternative retrieval to embeddings that relies on extracted entities.
"""
pass
engines = {
'chroma': ChromaAdvancedRetrieval,
'faiss': FAISSAdvancedRetrieval,
'ner': NER_Retrival
}
class DataStorage:
embeddings_dict = {}
embeddings_map_from_md5 = {}
embeddings_map_to_md5 = {}
def __init__(
self,
embedding_function,
root_path: Path = None,
engine=ChromaAdvancedRetrieval,
) -> None:
self.root_path = root_path
self.engine = engine
self.embedding_function = embedding_function
if root_path is not None:
self.embeddings_root_path = root_path
if not os.path.exists(root_path):
os.makedirs(root_path)
else:
self.load_embeddings(self.embeddings_root_path)
def load_embeddings(self, embeddings_root_path: Union[str, Path]) -> None:
"""
Load the vector storage assuming they are all persisted and stored in a single directory.
The root path of the embeddings containing one data store for each document in each subdirectory
"""
embeddings_directories = [f for f in os.scandir(embeddings_root_path) if f.is_dir()]
if len(embeddings_directories) == 0:
print("No available embeddings")
return
for embedding_document_dir in embeddings_directories:
self.embeddings_dict[embedding_document_dir.name] = self.engine(
persist_directory=embedding_document_dir.path,
embedding_function=self.embedding_function
)
filename_list = list(Path(embedding_document_dir).glob('*.storage_filename'))
if filename_list:
filenam = filename_list[0].name.replace(".storage_filename", "")
self.embeddings_map_from_md5[embedding_document_dir.name] = filenam
self.embeddings_map_to_md5[filenam] = embedding_document_dir.name
print("Embedding loaded: ", len(self.embeddings_dict.keys()))
def get_loaded_embeddings_ids(self):
return list(self.embeddings_dict.keys())
def get_md5_from_filename(self, filename):
return self.embeddings_map_to_md5[filename]
def get_filename_from_md5(self, md5):
return self.embeddings_map_from_md5[md5]
def embed_document(self, doc_id, texts, metadatas):
if doc_id not in self.embeddings_dict.keys():
self.embeddings_dict[doc_id] = self.engine.from_texts(texts,
embedding=self.embedding_function,
metadatas=metadatas,
collection_name=doc_id)
else:
# Workaround Chroma (?) breaking change
self.embeddings_dict[doc_id].delete_collection()
self.embeddings_dict[doc_id] = self.engine.from_texts(texts,
embedding=self.embedding_function,
metadatas=metadatas,
collection_name=doc_id)
self.embeddings_root_path = None
class DocumentQAEngine:
llm = None
qa_chain_type = None
default_prompts = {
'stuff': stuff_prompt,
'refine': refine_prompts,
"map_reduce": map_reduce_prompt,
"map_rerank": map_rerank_prompt
}
def __init__(self,
llm,
data_storage: DataStorage,
qa_chain_type="stuff",
grobid_url=None,
memory=None
):
self.llm = llm
self.memory = memory
self.chain = load_qa_chain(llm, chain_type=qa_chain_type)
self.text_merger = TextMerger()
self.data_storage = data_storage
if grobid_url:
self.grobid_processor = GrobidProcessor(grobid_url)
def query_document(
self,
query: str,
doc_id,
output_parser=None,
context_size=4,
extraction_schema=None,
verbose=False
) -> (Any, str):
# self.load_embeddings(self.embeddings_root_path)
if verbose:
print(query)
response, coordinates = self._run_query(doc_id, query, context_size=context_size)
response = response['output_text'] if 'output_text' in response else response
if verbose:
print(doc_id, "->", response)
if output_parser:
try:
return self._parse_json(response, output_parser), response
except Exception as oe:
print("Failing to parse the response", oe)
return None, response, coordinates
elif extraction_schema:
try:
chain = create_extraction_chain(extraction_schema, self.llm)
parsed = chain.run(response)
return parsed, response, coordinates
except Exception as oe:
print("Failing to parse the response", oe)
return None, response, coordinates
else:
return None, response, coordinates
def query_storage(self, query: str, doc_id, context_size=4) -> (List[Document], list):
"""
Returns the context related to a given query
"""
documents, coordinates = self._get_context(doc_id, query, context_size)
context_as_text = [doc.page_content for doc in documents]
return context_as_text, coordinates
def query_storage_and_embeddings(self, query: str, doc_id, context_size=4):
"""
Returns both the context and the embedding information from a given query
"""
db = self.data_storage.embeddings_dict[doc_id]
retriever = db.as_retriever(search_kwargs={"k": context_size}, search_type="similarity_with_embeddings")
relevant_documents = retriever.get_relevant_documents(query)
context_as_text = [doc.page_content for doc in relevant_documents]
return context_as_text
# chroma_collection.get(include=['embeddings'])['embeddings']
def _parse_json(self, response, output_parser):
system_message = "You are an useful assistant expert in materials science, physics, and chemistry " \
"that can process text and transform it to JSON."
human_message = """Transform the text between three double quotes in JSON.\n\n\n\n
{format_instructions}\n\nText: \"\"\"{text}\"\"\""""
system_message_prompt = SystemMessagePromptTemplate.from_template(system_message)
human_message_prompt = HumanMessagePromptTemplate.from_template(human_message)
prompt_template = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
results = self.llm(
prompt_template.format_prompt(
text=response,
format_instructions=output_parser.get_format_instructions()
).to_messages()
)
parsed_output = output_parser.parse(results.content)
return parsed_output
def _run_query(self, doc_id, query, context_size=4) -> (List[Document], list):
relevant_documents = self._get_context(doc_id, query, context_size)
relevant_document_coordinates = [doc.metadata['coordinates'].split(";") if 'coordinates' in doc.metadata else []
for doc in
relevant_documents]
response = self.chain.run(input_documents=relevant_documents,
question=query)
if self.memory:
self.memory.save_context({"input": query}, {"output": response})
return response, relevant_document_coordinates
def _get_context(self, doc_id, query, context_size=4) -> (List[Document], list):
db = self.data_storage.embeddings_dict[doc_id]
retriever = db.as_retriever(search_kwargs={"k": context_size})
relevant_documents = retriever.get_relevant_documents(query)
relevant_document_coordinates = [doc.metadata['coordinates'].split(";") if 'coordinates' in doc.metadata else []
for doc in
relevant_documents]
if self.memory and len(self.memory.buffer_as_messages) > 0:
relevant_documents.append(
Document(
page_content="""Following, the previous question and answers. Use these information only when in the question there are unspecified references:\n{}\n\n""".format(
self.memory.buffer_as_str))
)
return relevant_documents, relevant_document_coordinates
def get_full_context_by_document(self, doc_id):
"""
Return the full context from the document
"""
db = self.data_storage.embeddings_dict[doc_id]
docs = db.get()
return docs['documents']
def _get_context_multiquery(self, doc_id, query, context_size=4):
db = self.data_storage.embeddings_dict[doc_id].as_retriever(search_kwargs={"k": context_size})
multi_query_retriever = MultiQueryRetriever.from_llm(retriever=db, llm=self.llm)
relevant_documents = multi_query_retriever.get_relevant_documents(query)
return relevant_documents
def get_text_from_document(self, pdf_file_path, chunk_size=-1, perc_overlap=0.1, verbose=False):
"""
Extract text from documents using Grobid.
- if chunk_size is < 0, keeps each paragraph separately
- if chunk_size > 0, aggregate all paragraphs and split them again using an approximate chunk size
"""
if verbose:
print("File", pdf_file_path)
filename = Path(pdf_file_path).stem
coordinates = True # if chunk_size == -1 else False
structure = self.grobid_processor.process(pdf_file_path, coordinates=coordinates)
biblio = structure['biblio']
biblio['filename'] = filename.replace(" ", "_")
if verbose:
print("Generating embeddings for:", hash, ", filename: ", filename)
texts = []
metadatas = []
ids = []
if chunk_size > 0:
new_passages = self.text_merger.merge_passages(structure['passages'], chunk_size=chunk_size)
else:
new_passages = structure['passages']
for passage in new_passages:
biblio_copy = copy.copy(biblio)
if len(str.strip(passage['text'])) > 0:
texts.append(passage['text'])
biblio_copy['type'] = passage['type']
biblio_copy['section'] = passage['section']
biblio_copy['subSection'] = passage['subSection']
biblio_copy['coordinates'] = passage['coordinates']
metadatas.append(biblio_copy)
# ids.append(passage['passage_id'])
ids = [id for id, t in enumerate(new_passages)]
return texts, metadatas, ids
def create_memory_embeddings(
self,
pdf_path,
doc_id=None,
chunk_size=500,
perc_overlap=0.1
):
texts, metadata, ids = self.get_text_from_document(
pdf_path,
chunk_size=chunk_size,
perc_overlap=perc_overlap)
if doc_id:
hash = doc_id
else:
hash = metadata[0]['hash']
self.data_storage.embed_document(hash, texts, metadata)
return hash
def create_embeddings(
self,
pdfs_dir_path: Path,
chunk_size=500,
perc_overlap=0.1,
include_biblio=False
):
input_files = []
for root, dirs, files in os.walk(pdfs_dir_path, followlinks=False):
for file_ in files:
if not (file_.lower().endswith(".pdf")):
continue
input_files.append(os.path.join(root, file_))
for input_file in tqdm(input_files, total=len(input_files), unit='document',
desc="Grobid + embeddings processing"):
md5 = self.calculate_md5(input_file)
data_path = os.path.join(self.data_storage.embeddings_root_path, md5)
if os.path.exists(data_path):
print(data_path, "exists. Skipping it ")
continue
# include = ["biblio"] if include_biblio else []
texts, metadata, ids = self.get_text_from_document(
input_file,
chunk_size=chunk_size,
perc_overlap=perc_overlap)
filename = metadata[0]['filename']
vector_db_document = Chroma.from_texts(texts,
metadatas=metadata,
embedding=self.embedding_function,
persist_directory=data_path)
vector_db_document.persist()
with open(os.path.join(data_path, filename + ".storage_filename"), 'w') as fo:
fo.write("")
@staticmethod
def calculate_md5(input_file: Union[Path, str]):
import hashlib
md5_hash = hashlib.md5()
with open(input_file, 'rb') as fi:
md5_hash.update(fi.read())
return md5_hash.hexdigest().upper()