Update app.py
Browse files
app.py
CHANGED
|
@@ -136,16 +136,34 @@ def evaluate_model_with_report(val_loader):
|
|
| 136 |
|
| 137 |
# Performance metrics
|
| 138 |
def generate_performance_metrics():
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
return {
|
| 143 |
"accuracy": f"{accuracy:.2%}",
|
| 144 |
"precision": f"{report['1']['precision']:.2%}",
|
| 145 |
"recall": f"{report['1']['recall']:.2%}",
|
| 146 |
-
"f1_score": f"{report['1']['f1-score']:.2%}"
|
| 147 |
}
|
| 148 |
|
|
|
|
| 149 |
# Gradio Interface
|
| 150 |
|
| 151 |
def create_interface():
|
|
|
|
| 136 |
|
| 137 |
# Performance metrics
|
| 138 |
def generate_performance_metrics():
|
| 139 |
+
model.eval() # Set model to evaluation mode
|
| 140 |
+
|
| 141 |
+
y_true = [] # True labels
|
| 142 |
+
y_pred = [] # Predicted labels
|
| 143 |
+
|
| 144 |
+
with torch.no_grad():
|
| 145 |
+
for batch in val_loader:
|
| 146 |
+
inputs = tokenizer(email, padding=True, truncation=True, max_length=256, return_tensors="pt")
|
| 147 |
+
inputs = {key: val.to(device) for key, val in inputs.items()}
|
| 148 |
+
|
| 149 |
+
outputs = model(**inputs)
|
| 150 |
+
prediction = torch.argmax(outputs.logits, dim=1).item()
|
| 151 |
+
|
| 152 |
+
y_true.append(label)
|
| 153 |
+
y_pred.append(prediction)
|
| 154 |
+
|
| 155 |
+
# Compute accuracy and classification report
|
| 156 |
+
accuracy = accuracy_score(y_true, y_pred)
|
| 157 |
+
report = classification_report(y_true, y_pred, output_dict=True)
|
| 158 |
+
|
| 159 |
return {
|
| 160 |
"accuracy": f"{accuracy:.2%}",
|
| 161 |
"precision": f"{report['1']['precision']:.2%}",
|
| 162 |
"recall": f"{report['1']['recall']:.2%}",
|
| 163 |
+
"f1_score": f"{report['1']['f1-score']:.2%}",
|
| 164 |
}
|
| 165 |
|
| 166 |
+
|
| 167 |
# Gradio Interface
|
| 168 |
|
| 169 |
def create_interface():
|