MockingBird / synthesizer /inference.py
lewiswu1209's picture
initial commit
f4dac30
import torch
from synthesizer import audio
from synthesizer.hparams import hparams
from synthesizer.models.tacotron import Tacotron
from synthesizer.utils.symbols import symbols
from synthesizer.utils.text import text_to_sequence
from vocoder.display import simple_table
from pathlib import Path
from typing import Union, List
import numpy as np
import librosa
from utils import logmmse
import json
from pypinyin import lazy_pinyin, Style
class Synthesizer:
sample_rate = hparams.sample_rate
hparams = hparams
def __init__(self, model_fpath: Path, verbose=True):
"""
The model isn't instantiated and loaded in memory until needed or until load() is called.
:param model_fpath: path to the trained model file
:param verbose: if False, prints less information when using the model
"""
self.model_fpath = model_fpath
self.verbose = verbose
# Check for GPU
if torch.cuda.is_available():
self.device = torch.device("cuda")
else:
self.device = torch.device("cpu")
if self.verbose:
print("Synthesizer using device:", self.device)
# Tacotron model will be instantiated later on first use.
self._model = None
def is_loaded(self):
"""
Whether the model is loaded in memory.
"""
return self._model is not None
def load(self):
# Try to scan config file
model_config_fpaths = list(self.model_fpath.parent.rglob("*.json"))
if len(model_config_fpaths)>0 and model_config_fpaths[0].exists():
with model_config_fpaths[0].open("r", encoding="utf-8") as f:
hparams.loadJson(json.load(f))
"""
Instantiates and loads the model given the weights file that was passed in the constructor.
"""
self._model = Tacotron(embed_dims=hparams.tts_embed_dims,
num_chars=len(symbols),
encoder_dims=hparams.tts_encoder_dims,
decoder_dims=hparams.tts_decoder_dims,
n_mels=hparams.num_mels,
fft_bins=hparams.num_mels,
postnet_dims=hparams.tts_postnet_dims,
encoder_K=hparams.tts_encoder_K,
lstm_dims=hparams.tts_lstm_dims,
postnet_K=hparams.tts_postnet_K,
num_highways=hparams.tts_num_highways,
dropout=hparams.tts_dropout,
stop_threshold=hparams.tts_stop_threshold,
speaker_embedding_size=hparams.speaker_embedding_size).to(self.device)
self._model.load(self.model_fpath, self.device)
self._model.eval()
if self.verbose:
print("Loaded synthesizer \"%s\" trained to step %d" % (self.model_fpath.name, self._model.state_dict()["step"]))
def synthesize_spectrograms(self, texts: List[str],
embeddings: Union[np.ndarray, List[np.ndarray]],
return_alignments=False, style_idx=0, min_stop_token=5, steps=2000):
"""
Synthesizes mel spectrograms from texts and speaker embeddings.
:param texts: a list of N text prompts to be synthesized
:param embeddings: a numpy array or list of speaker embeddings of shape (N, 256)
:param return_alignments: if True, a matrix representing the alignments between the
characters
and each decoder output step will be returned for each spectrogram
:return: a list of N melspectrograms as numpy arrays of shape (80, Mi), where Mi is the
sequence length of spectrogram i, and possibly the alignments.
"""
# Load the model on the first request.
if not self.is_loaded():
self.load()
# Print some info about the model when it is loaded
tts_k = self._model.get_step() // 1000
simple_table([("Tacotron", str(tts_k) + "k"),
("r", self._model.r)])
print("Read " + str(texts))
texts = [" ".join(lazy_pinyin(v, style=Style.TONE3, neutral_tone_with_five=True)) for v in texts]
print("Synthesizing " + str(texts))
# Preprocess text inputs
inputs = [text_to_sequence(text, hparams.tts_cleaner_names) for text in texts]
if not isinstance(embeddings, list):
embeddings = [embeddings]
# Batch inputs
batched_inputs = [inputs[i:i+hparams.synthesis_batch_size]
for i in range(0, len(inputs), hparams.synthesis_batch_size)]
batched_embeds = [embeddings[i:i+hparams.synthesis_batch_size]
for i in range(0, len(embeddings), hparams.synthesis_batch_size)]
specs = []
for i, batch in enumerate(batched_inputs, 1):
if self.verbose:
print(f"\n| Generating {i}/{len(batched_inputs)}")
# Pad texts so they are all the same length
text_lens = [len(text) for text in batch]
max_text_len = max(text_lens)
chars = [pad1d(text, max_text_len) for text in batch]
chars = np.stack(chars)
# Stack speaker embeddings into 2D array for batch processing
speaker_embeds = np.stack(batched_embeds[i-1])
# Convert to tensor
chars = torch.tensor(chars).long().to(self.device)
speaker_embeddings = torch.tensor(speaker_embeds).float().to(self.device)
# Inference
_, mels, alignments = self._model.generate(chars, speaker_embeddings, style_idx=style_idx, min_stop_token=min_stop_token, steps=steps)
mels = mels.detach().cpu().numpy()
for m in mels:
# Trim silence from end of each spectrogram
while np.max(m[:, -1]) < hparams.tts_stop_threshold:
m = m[:, :-1]
specs.append(m)
if self.verbose:
print("\n\nDone.\n")
return (specs, alignments) if return_alignments else specs
@staticmethod
def load_preprocess_wav(fpath):
"""
Loads and preprocesses an audio file under the same conditions the audio files were used to
train the synthesizer.
"""
wav = librosa.load(path=str(fpath), sr=hparams.sample_rate)[0]
if hparams.rescale:
wav = wav / np.abs(wav).max() * hparams.rescaling_max
# denoise
if len(wav) > hparams.sample_rate*(0.3+0.1):
noise_wav = np.concatenate([wav[:int(hparams.sample_rate*0.15)],
wav[-int(hparams.sample_rate*0.15):]])
profile = logmmse.profile_noise(noise_wav, hparams.sample_rate)
wav = logmmse.denoise(wav, profile)
return wav
@staticmethod
def make_spectrogram(fpath_or_wav: Union[str, Path, np.ndarray]):
"""
Creates a mel spectrogram from an audio file in the same manner as the mel spectrograms that
were fed to the synthesizer when training.
"""
if isinstance(fpath_or_wav, str) or isinstance(fpath_or_wav, Path):
wav = Synthesizer.load_preprocess_wav(fpath_or_wav)
else:
wav = fpath_or_wav
mel_spectrogram = audio.melspectrogram(wav, hparams).astype(np.float32)
return mel_spectrogram
@staticmethod
def griffin_lim(mel):
"""
Inverts a mel spectrogram using Griffin-Lim. The mel spectrogram is expected to have been built
with the same parameters present in hparams.py.
"""
return audio.inv_mel_spectrogram(mel, hparams)
def pad1d(x, max_len, pad_value=0):
return np.pad(x, (0, max_len - len(x)), mode="constant", constant_values=pad_value)