Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# Copyright 2019 Shigeki Karita | |
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
"""Positonal Encoding Module.""" | |
import math | |
import torch | |
def _pre_hook( | |
state_dict, | |
prefix, | |
local_metadata, | |
strict, | |
missing_keys, | |
unexpected_keys, | |
error_msgs, | |
): | |
"""Perform pre-hook in load_state_dict for backward compatibility. | |
Note: | |
We saved self.pe until v.0.5.2 but we have omitted it later. | |
Therefore, we remove the item "pe" from `state_dict` for backward compatibility. | |
""" | |
k = prefix + "pe" | |
if k in state_dict: | |
state_dict.pop(k) | |
class PositionalEncoding(torch.nn.Module): | |
"""Positional encoding. | |
:param int d_model: embedding dim | |
:param float dropout_rate: dropout rate | |
:param int max_len: maximum input length | |
:param reverse: whether to reverse the input position | |
""" | |
def __init__(self, d_model, dropout_rate, max_len=5000, reverse=False): | |
"""Construct an PositionalEncoding object.""" | |
super(PositionalEncoding, self).__init__() | |
self.d_model = d_model | |
self.reverse = reverse | |
self.xscale = math.sqrt(self.d_model) | |
self.dropout = torch.nn.Dropout(p=dropout_rate) | |
self.pe = None | |
self.extend_pe(torch.tensor(0.0).expand(1, max_len)) | |
self._register_load_state_dict_pre_hook(_pre_hook) | |
def extend_pe(self, x): | |
"""Reset the positional encodings.""" | |
if self.pe is not None: | |
if self.pe.size(1) >= x.size(1): | |
if self.pe.dtype != x.dtype or self.pe.device != x.device: | |
self.pe = self.pe.to(dtype=x.dtype, device=x.device) | |
return | |
pe = torch.zeros(x.size(1), self.d_model) | |
if self.reverse: | |
position = torch.arange( | |
x.size(1) - 1, -1, -1.0, dtype=torch.float32 | |
).unsqueeze(1) | |
else: | |
position = torch.arange(0, x.size(1), dtype=torch.float32).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, self.d_model, 2, dtype=torch.float32) | |
* -(math.log(10000.0) / self.d_model) | |
) | |
pe[:, 0::2] = torch.sin(position * div_term) | |
pe[:, 1::2] = torch.cos(position * div_term) | |
pe = pe.unsqueeze(0) | |
self.pe = pe.to(device=x.device, dtype=x.dtype) | |
def forward(self, x: torch.Tensor): | |
"""Add positional encoding. | |
Args: | |
x (torch.Tensor): Input. Its shape is (batch, time, ...) | |
Returns: | |
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...) | |
""" | |
self.extend_pe(x) | |
x = x * self.xscale + self.pe[:, : x.size(1)] | |
return self.dropout(x) | |
class ScaledPositionalEncoding(PositionalEncoding): | |
"""Scaled positional encoding module. | |
See also: Sec. 3.2 https://arxiv.org/pdf/1809.08895.pdf | |
""" | |
def __init__(self, d_model, dropout_rate, max_len=5000): | |
"""Initialize class. | |
:param int d_model: embedding dim | |
:param float dropout_rate: dropout rate | |
:param int max_len: maximum input length | |
""" | |
super().__init__(d_model=d_model, dropout_rate=dropout_rate, max_len=max_len) | |
self.alpha = torch.nn.Parameter(torch.tensor(1.0)) | |
def reset_parameters(self): | |
"""Reset parameters.""" | |
self.alpha.data = torch.tensor(1.0) | |
def forward(self, x): | |
"""Add positional encoding. | |
Args: | |
x (torch.Tensor): Input. Its shape is (batch, time, ...) | |
Returns: | |
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...) | |
""" | |
self.extend_pe(x) | |
x = x + self.alpha * self.pe[:, : x.size(1)] | |
return self.dropout(x) | |
class RelPositionalEncoding(PositionalEncoding): | |
"""Relitive positional encoding module. | |
See : Appendix B in https://arxiv.org/abs/1901.02860 | |
:param int d_model: embedding dim | |
:param float dropout_rate: dropout rate | |
:param int max_len: maximum input length | |
""" | |
def __init__(self, d_model, dropout_rate, max_len=5000): | |
"""Initialize class. | |
:param int d_model: embedding dim | |
:param float dropout_rate: dropout rate | |
:param int max_len: maximum input length | |
""" | |
super().__init__(d_model, dropout_rate, max_len, reverse=True) | |
def forward(self, x): | |
"""Compute positional encoding. | |
Args: | |
x (torch.Tensor): Input. Its shape is (batch, time, ...) | |
Returns: | |
torch.Tensor: x. Its shape is (batch, time, ...) | |
torch.Tensor: pos_emb. Its shape is (1, time, ...) | |
""" | |
self.extend_pe(x) | |
x = x * self.xscale | |
pos_emb = self.pe[:, : x.size(1)] | |
return self.dropout(x), self.dropout(pos_emb) | |