Spaces:
Runtime error
Runtime error
#!/usr/bin/env python3 | |
# -*- coding: utf-8 -*- | |
# Copyright 2019 Shigeki Karita | |
# Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) | |
"""Encoder definition.""" | |
import logging | |
import torch | |
from typing import Callable | |
from typing import Collection | |
from typing import Dict | |
from typing import List | |
from typing import Optional | |
from typing import Tuple | |
from .convolution import ConvolutionModule | |
from .encoder_layer import EncoderLayer | |
from ..nets_utils import get_activation, make_pad_mask | |
from .vgg import VGG2L | |
from .attention import MultiHeadedAttention, RelPositionMultiHeadedAttention | |
from .embedding import PositionalEncoding, ScaledPositionalEncoding, RelPositionalEncoding | |
from .layer_norm import LayerNorm | |
from .multi_layer_conv import Conv1dLinear, MultiLayeredConv1d | |
from .positionwise_feed_forward import PositionwiseFeedForward | |
from .repeat import repeat | |
from .subsampling import Conv2dNoSubsampling, Conv2dSubsampling | |
class ConformerEncoder(torch.nn.Module): | |
"""Conformer encoder module. | |
:param int idim: input dim | |
:param int attention_dim: dimention of attention | |
:param int attention_heads: the number of heads of multi head attention | |
:param int linear_units: the number of units of position-wise feed forward | |
:param int num_blocks: the number of decoder blocks | |
:param float dropout_rate: dropout rate | |
:param float attention_dropout_rate: dropout rate in attention | |
:param float positional_dropout_rate: dropout rate after adding positional encoding | |
:param str or torch.nn.Module input_layer: input layer type | |
:param bool normalize_before: whether to use layer_norm before the first block | |
:param bool concat_after: whether to concat attention layer's input and output | |
if True, additional linear will be applied. | |
i.e. x -> x + linear(concat(x, att(x))) | |
if False, no additional linear will be applied. i.e. x -> x + att(x) | |
:param str positionwise_layer_type: linear of conv1d | |
:param int positionwise_conv_kernel_size: kernel size of positionwise conv1d layer | |
:param str encoder_pos_enc_layer_type: encoder positional encoding layer type | |
:param str encoder_attn_layer_type: encoder attention layer type | |
:param str activation_type: encoder activation function type | |
:param bool macaron_style: whether to use macaron style for positionwise layer | |
:param bool use_cnn_module: whether to use convolution module | |
:param int cnn_module_kernel: kernerl size of convolution module | |
:param int padding_idx: padding_idx for input_layer=embed | |
""" | |
def __init__( | |
self, | |
input_size, | |
attention_dim=256, | |
attention_heads=4, | |
linear_units=2048, | |
num_blocks=6, | |
dropout_rate=0.1, | |
positional_dropout_rate=0.1, | |
attention_dropout_rate=0.0, | |
input_layer="conv2d", | |
normalize_before=True, | |
concat_after=False, | |
positionwise_layer_type="linear", | |
positionwise_conv_kernel_size=1, | |
macaron_style=False, | |
pos_enc_layer_type="abs_pos", | |
selfattention_layer_type="selfattn", | |
activation_type="swish", | |
use_cnn_module=False, | |
cnn_module_kernel=31, | |
padding_idx=-1, | |
no_subsample=False, | |
subsample_by_2=False, | |
): | |
"""Construct an Encoder object.""" | |
super().__init__() | |
self._output_size = attention_dim | |
idim = input_size | |
activation = get_activation(activation_type) | |
if pos_enc_layer_type == "abs_pos": | |
pos_enc_class = PositionalEncoding | |
elif pos_enc_layer_type == "scaled_abs_pos": | |
pos_enc_class = ScaledPositionalEncoding | |
elif pos_enc_layer_type == "rel_pos": | |
assert selfattention_layer_type == "rel_selfattn" | |
pos_enc_class = RelPositionalEncoding | |
else: | |
raise ValueError("unknown pos_enc_layer: " + pos_enc_layer_type) | |
if input_layer == "linear": | |
self.embed = torch.nn.Sequential( | |
torch.nn.Linear(idim, attention_dim), | |
torch.nn.LayerNorm(attention_dim), | |
torch.nn.Dropout(dropout_rate), | |
pos_enc_class(attention_dim, positional_dropout_rate), | |
) | |
elif input_layer == "conv2d": | |
logging.info("Encoder input layer type: conv2d") | |
if no_subsample: | |
self.embed = Conv2dNoSubsampling( | |
idim, | |
attention_dim, | |
dropout_rate, | |
pos_enc_class(attention_dim, positional_dropout_rate), | |
) | |
else: | |
self.embed = Conv2dSubsampling( | |
idim, | |
attention_dim, | |
dropout_rate, | |
pos_enc_class(attention_dim, positional_dropout_rate), | |
subsample_by_2, # NOTE(Sx): added by songxiang | |
) | |
elif input_layer == "vgg2l": | |
self.embed = VGG2L(idim, attention_dim) | |
elif input_layer == "embed": | |
self.embed = torch.nn.Sequential( | |
torch.nn.Embedding(idim, attention_dim, padding_idx=padding_idx), | |
pos_enc_class(attention_dim, positional_dropout_rate), | |
) | |
elif isinstance(input_layer, torch.nn.Module): | |
self.embed = torch.nn.Sequential( | |
input_layer, | |
pos_enc_class(attention_dim, positional_dropout_rate), | |
) | |
elif input_layer is None: | |
self.embed = torch.nn.Sequential( | |
pos_enc_class(attention_dim, positional_dropout_rate) | |
) | |
else: | |
raise ValueError("unknown input_layer: " + input_layer) | |
self.normalize_before = normalize_before | |
if positionwise_layer_type == "linear": | |
positionwise_layer = PositionwiseFeedForward | |
positionwise_layer_args = ( | |
attention_dim, | |
linear_units, | |
dropout_rate, | |
activation, | |
) | |
elif positionwise_layer_type == "conv1d": | |
positionwise_layer = MultiLayeredConv1d | |
positionwise_layer_args = ( | |
attention_dim, | |
linear_units, | |
positionwise_conv_kernel_size, | |
dropout_rate, | |
) | |
elif positionwise_layer_type == "conv1d-linear": | |
positionwise_layer = Conv1dLinear | |
positionwise_layer_args = ( | |
attention_dim, | |
linear_units, | |
positionwise_conv_kernel_size, | |
dropout_rate, | |
) | |
else: | |
raise NotImplementedError("Support only linear or conv1d.") | |
if selfattention_layer_type == "selfattn": | |
logging.info("encoder self-attention layer type = self-attention") | |
encoder_selfattn_layer = MultiHeadedAttention | |
encoder_selfattn_layer_args = ( | |
attention_heads, | |
attention_dim, | |
attention_dropout_rate, | |
) | |
elif selfattention_layer_type == "rel_selfattn": | |
assert pos_enc_layer_type == "rel_pos" | |
encoder_selfattn_layer = RelPositionMultiHeadedAttention | |
encoder_selfattn_layer_args = ( | |
attention_heads, | |
attention_dim, | |
attention_dropout_rate, | |
) | |
else: | |
raise ValueError("unknown encoder_attn_layer: " + selfattention_layer_type) | |
convolution_layer = ConvolutionModule | |
convolution_layer_args = (attention_dim, cnn_module_kernel, activation) | |
self.encoders = repeat( | |
num_blocks, | |
lambda lnum: EncoderLayer( | |
attention_dim, | |
encoder_selfattn_layer(*encoder_selfattn_layer_args), | |
positionwise_layer(*positionwise_layer_args), | |
positionwise_layer(*positionwise_layer_args) if macaron_style else None, | |
convolution_layer(*convolution_layer_args) if use_cnn_module else None, | |
dropout_rate, | |
normalize_before, | |
concat_after, | |
), | |
) | |
if self.normalize_before: | |
self.after_norm = LayerNorm(attention_dim) | |
def output_size(self) -> int: | |
return self._output_size | |
def forward( | |
self, | |
xs_pad: torch.Tensor, | |
ilens: torch.Tensor, | |
prev_states: torch.Tensor = None, | |
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]: | |
""" | |
Args: | |
xs_pad: input tensor (B, L, D) | |
ilens: input lengths (B) | |
prev_states: Not to be used now. | |
Returns: | |
Position embedded tensor and mask | |
""" | |
masks = (~make_pad_mask(ilens)[:, None, :]).to(xs_pad.device) | |
if isinstance(self.embed, (Conv2dSubsampling, Conv2dNoSubsampling, VGG2L)): | |
# print(xs_pad.shape) | |
xs_pad, masks = self.embed(xs_pad, masks) | |
# print(xs_pad[0].size()) | |
else: | |
xs_pad = self.embed(xs_pad) | |
xs_pad, masks = self.encoders(xs_pad, masks) | |
if isinstance(xs_pad, tuple): | |
xs_pad = xs_pad[0] | |
if self.normalize_before: | |
xs_pad = self.after_norm(xs_pad) | |
olens = masks.squeeze(1).sum(1) | |
return xs_pad, olens, None | |
# def forward(self, xs, masks): | |
# """Encode input sequence. | |
# :param torch.Tensor xs: input tensor | |
# :param torch.Tensor masks: input mask | |
# :return: position embedded tensor and mask | |
# :rtype Tuple[torch.Tensor, torch.Tensor]: | |
# """ | |
# if isinstance(self.embed, (Conv2dSubsampling, VGG2L)): | |
# xs, masks = self.embed(xs, masks) | |
# else: | |
# xs = self.embed(xs) | |
# xs, masks = self.encoders(xs, masks) | |
# if isinstance(xs, tuple): | |
# xs = xs[0] | |
# if self.normalize_before: | |
# xs = self.after_norm(xs) | |
# return xs, masks | |