Spaces:
Sleeping
Sleeping
from fastai.vision.all import * | |
import gradio as gr | |
import glob | |
learn = load_learner('export.pkl') | |
labels = learn.dls.vocab | |
def predict(img): | |
img = PILImage.create(img) | |
pred, pred_idx, probs = learn.predict(img) | |
return {labels[i]: float(probs[i]) for i in range(len(labels))} | |
title='Pet Breed Classifier' | |
description = ('Pet breed classifier trained on the Oxford Pets dataset' + | |
'with the fastai library and the ResNet50 neural network architecture. ' + | |
'Based on the tutorial by Dr Tanishq Abraham.') | |
article="<p style='text-align: center'><a href='https://tmabraham.github.io/blog/gradio_hf_spaces_tutorial' target='_blank'>Blog post</a></p>" | |
subfolder = Path('pets') | |
search_pattern = str(subfolder/'*.jpg') | |
jpg_files = glob.glob(search_pattern) | |
gr.Interface(fn=predict, | |
inputs=gr.Image(), | |
outputs=gr.Label(num_top_classes=3), | |
title=title, | |
description=description, | |
article=article, | |
examples=jpg_files, | |
examples_per_page=37 | |
).launch(share=True) |