levena's picture
feat: ๅ‹•ใ‹ใชใ‹ใฃใŸใฎใงใƒ‡ใƒขใ‚’ใƒžใƒซใ‚ณใƒ”ใ—ใฆใใŸ
adf314d
# import spaces
# import transformers
# import gradio as gr
# def greet(name):
# return "Hello " + name + "!!"
# # @spaces.GPU
# # def infer(input_text: str = "Who are you?"):
# # # messages = [
# # # {"role": "user", "content": name},
# # # ]
# # model = transformers.AutoModelForCausalLM.from_pretrained("microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True)
# # token = transformers.AutoTokenizer.from_pretrained("microsoft/Phi-3-mini-4k-instruct", trust_remote_code=True)
# # input_ids = token.encode(input_text, return_tensors="pt" )
# # output = model(input_ids)
# # print(output)
# # return output
# @spaces.GPU
# def infer_demo(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
# text_input = gr.Textbox(label="Input Text", placeholder="test")
# demo = gr.Interface(fn=infer, inputs="text", outputs="text")
# demo.launch()