rm cuda
Browse files
app.py
CHANGED
@@ -27,7 +27,7 @@ from model import SASNet
|
|
27 |
warnings.filterwarnings('ignore')
|
28 |
|
29 |
# define the GPU id to be used
|
30 |
-
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
31 |
|
32 |
class data(Dataset):
|
33 |
def __init__(self, img, transform=None):
|
@@ -63,7 +63,8 @@ def loading_data(img):
|
|
63 |
def predict(img):
|
64 |
"""the main process of inference"""
|
65 |
test_loader = loading_data(img)
|
66 |
-
model = SASNet()
|
|
|
67 |
model_path = "./SHHA.pth"
|
68 |
# load the trained model
|
69 |
model.load_state_dict(torch.load(model_path))
|
@@ -74,9 +75,9 @@ def predict(img):
|
|
74 |
|
75 |
for vi, data in enumerate(test_loader, 0):
|
76 |
img = data
|
77 |
-
img = img.cuda()
|
78 |
pred_map = model(img)
|
79 |
-
pred_map = pred_map.data.cpu().numpy()
|
80 |
for i_img in range(pred_map.shape[0]):
|
81 |
pred_cnt = np.sum(pred_map[i_img]) / 1000
|
82 |
|
|
|
27 |
warnings.filterwarnings('ignore')
|
28 |
|
29 |
# define the GPU id to be used
|
30 |
+
#os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
31 |
|
32 |
class data(Dataset):
|
33 |
def __init__(self, img, transform=None):
|
|
|
63 |
def predict(img):
|
64 |
"""the main process of inference"""
|
65 |
test_loader = loading_data(img)
|
66 |
+
model = SASNet()
|
67 |
+
#model = SASNet().cuda()
|
68 |
model_path = "./SHHA.pth"
|
69 |
# load the trained model
|
70 |
model.load_state_dict(torch.load(model_path))
|
|
|
75 |
|
76 |
for vi, data in enumerate(test_loader, 0):
|
77 |
img = data
|
78 |
+
#img = img.cuda()
|
79 |
pred_map = model(img)
|
80 |
+
#pred_map = pred_map.data.cpu().numpy()
|
81 |
for i_img in range(pred_map.shape[0]):
|
82 |
pred_cnt = np.sum(pred_map[i_img]) / 1000
|
83 |
|