chatbot_full / bm25_utils.py
letrunglinh's picture
Upload 15 files
fa01b79
import numpy as np
from tqdm.auto import tqdm
tqdm.pandas()
from gensim.corpora import Dictionary
from gensim.models import TfidfModel
from gensim.similarities import SparseMatrixSimilarity
from text_utils import preprocess
class BM25Gensim:
def __init__(self, checkpoint_path, entity_dict, title2idx):
self.dictionary = Dictionary.load(checkpoint_path + "/dict")
self.tfidf_model = SparseMatrixSimilarity.load(checkpoint_path + "/tfidf")
self.bm25_index = TfidfModel.load(checkpoint_path + "/bm25_index")
self.title2idx = title2idx
self.entity_dict = entity_dict
def get_topk_stage1(self, query, topk=100):
tokenized_query = query.split()
tfidf_query = self.tfidf_model[self.dictionary.doc2bow(tokenized_query)]
scores = self.bm25_index[tfidf_query]
top_n = np.argsort(scores)[::-1][:topk]
return top_n, scores[top_n]
def get_topk_stage2(self, x, raw_answer=None, topk=50):
x = str(x)
query = preprocess(x, max_length=128).lower().split()
tfidf_query = self.tfidf_model[self.dictionary.doc2bow(query)]
scores = self.bm25_index[tfidf_query]
top_n = list(np.argsort(scores)[::-1][:topk])
if raw_answer is not None:
raw_answer = raw_answer.strip()
if raw_answer in self.entity_dict:
title = self.entity_dict[raw_answer].replace("wiki/", "").replace("_", " ")
extra_id = self.title2idx.get(title, -1)
if extra_id != -1 and extra_id not in top_n:
top_n.append(extra_id)
scores = scores[top_n]
return np.array(top_n), np.array(scores)