Spaces:
Runtime error
Runtime error
import numpy as np | |
import torch | |
import torch.nn as nn | |
from torch.utils.data import Dataset, DataLoader | |
from transformers import AutoModel, AutoConfig, AutoTokenizer | |
import pandas as pd | |
from optimum.intel import OVModelForQuestionAnswering | |
import openvino.inference_engine as ie | |
import os | |
import gradio as gr | |
AUTH_TOKEN = "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" | |
tokenizer = AutoTokenizer.from_pretrained('nguyenvulebinh/vi-mrc-base', | |
use_auth_token=AUTH_TOKEN) | |
pad_token_id = tokenizer.pad_token_id | |
# Load the model | |
model_xml = "openvino_stage1/stage1.xml" | |
model_bin = "openvino_stage1/stage1.bin" | |
# Create an Inference Engine object | |
ie_core = ie.IECore() | |
# Read the IR files" | |
net = ie_core.read_network(model=model_xml, weights=model_bin) | |
class PairwiseModel_modify(nn.Module): | |
def __init__(self, model_name, max_length=384, batch_size=16, device="cpu"): | |
super(PairwiseModel_modify, self).__init__() | |
self.max_length = max_length | |
self.batch_size = batch_size | |
self.device = device | |
# self.model = AutoModel.from_pretrained(model_name , use_auth_token=AUTH_TOKEN) | |
self.config = AutoConfig.from_pretrained(model_name, use_auth_token=AUTH_TOKEN) | |
self.fc = nn.Linear(768, 1).to(self.device) | |
def forward(self, ids, masks): | |
# Export the model to ONNX format | |
input_feed = {"input_ids": ids.cpu().numpy().astype(np.int64), "attention_mask": masks.cpu().numpy().astype(np.int64)} | |
# Specify the input shapes (batch_size, max_sequence_length) | |
input_shapes = {"input_ids": ids.shape, "attention_mask": masks.shape} | |
# Set the input shapes in the network | |
net.reshape(input_shapes) | |
# Load the network with the specified input shapes | |
exec_net = ie_core.load_network(network=net, device_name="CPU") | |
outputs = exec_net.infer(input_feed) | |
# Get the output tensor and apply the linear layer | |
out = torch.from_numpy(outputs["output"]).to(self.device) | |
out = out[:, 0] | |
return out | |
def stage1_ranking(self, question, texts): | |
tmp = pd.DataFrame() | |
tmp["text"] = [" ".join(x.split()) for x in texts] | |
tmp["question"] = question | |
valid_dataset = SiameseDatasetStage1(tmp, tokenizer, self.max_length, is_test=True) | |
valid_loader = DataLoader(valid_dataset, batch_size=self.batch_size, collate_fn=collate_fn, | |
num_workers=0, shuffle=False, pin_memory=True) | |
preds = [] | |
with torch.no_grad(): | |
bar = enumerate(valid_loader) | |
for step, data in bar: | |
ids = data["ids"].to(self.device) | |
masks = data["masks"].to(self.device) | |
preds.append(torch.sigmoid(self(ids, masks)).view(-1)) | |
preds = torch.concat(preds) | |
return preds.cpu().numpy() | |
class SiameseDatasetStage1(Dataset): | |
def __init__(self, df, tokenizer, max_length, is_test=False): | |
self.df = df | |
self.max_length = max_length | |
self.tokenizer = tokenizer | |
self.is_test = is_test | |
self.content1 = tokenizer.batch_encode_plus(list(df.question.values), max_length=max_length, truncation=True)[ | |
"input_ids"] | |
self.content2 = tokenizer.batch_encode_plus(list(df.text.values), max_length=max_length, truncation=True)[ | |
"input_ids"] | |
if not self.is_test: | |
self.targets = self.df.label | |
def __len__(self): | |
return len(self.df) | |
def __getitem__(self, index): | |
return { | |
'ids1': torch.tensor(self.content1[index], dtype=torch.long), | |
'ids2': torch.tensor(self.content2[index][1:], dtype=torch.long), | |
'target': torch.tensor(0) if self.is_test else torch.tensor(self.targets[index], dtype=torch.float) | |
} | |
class SiameseDatasetStage2(Dataset): | |
def __init__(self, df, tokenizer, max_length, is_test=False): | |
self.df = df | |
self.max_length = max_length | |
self.tokenizer = tokenizer | |
self.is_test = is_test | |
self.df["content1"] = self.df.apply(lambda row: row.question + f" {tokenizer.sep_token} " + row.answer, axis=1) | |
self.df["content2"] = self.df.apply(lambda row: row.title + f" {tokenizer.sep_token} " + row.candidate, axis=1) | |
self.content1 = tokenizer.batch_encode_plus(list(df.content1.values), max_length=max_length, truncation=True)[ | |
"input_ids"] | |
self.content2 = tokenizer.batch_encode_plus(list(df.content2.values), max_length=max_length, truncation=True)[ | |
"input_ids"] | |
if not self.is_test: | |
self.targets = self.df.label | |
def __len__(self): | |
return len(self.df) | |
def __getitem__(self, index): | |
return { | |
'ids1': torch.tensor(self.content1[index], dtype=torch.long), | |
'ids2': torch.tensor(self.content2[index][1:], dtype=torch.long), | |
'target': torch.tensor(0) if self.is_test else torch.tensor(self.targets[index], dtype=torch.float) | |
} | |
def collate_fn(batch): | |
ids = [torch.cat([x["ids1"], x["ids2"]]) for x in batch] | |
targets = [x["target"] for x in batch] | |
max_len = np.max([len(x) for x in ids]) | |
masks = [] | |
for i in range(len(ids)): | |
if len(ids[i]) < max_len: | |
ids[i] = torch.cat((ids[i], torch.tensor([pad_token_id, ] * (max_len - len(ids[i])), dtype=torch.long))) | |
masks.append(ids[i] != pad_token_id) | |
# print(tokenizer.decode(ids[0])) | |
outputs = { | |
"ids": torch.vstack(ids), | |
"masks": torch.vstack(masks), | |
"target": torch.vstack(targets).view(-1) | |
} | |
return outputs | |