Spaces:
Runtime error
Runtime error
import networkx as nx | |
import numpy as np | |
from cdlib import algorithms | |
# these functions are heavily influenced by the HF squad_metrics.py script | |
def normalize_text(s): | |
"""Removing articles and punctuation, and standardizing whitespace are all typical text processing steps.""" | |
import string, re | |
def remove_articles(text): | |
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE) | |
return re.sub(regex, " ", text) | |
def white_space_fix(text): | |
return " ".join(text.split()) | |
def remove_punc(text): | |
exclude = set(string.punctuation) | |
return "".join(ch for ch in text if ch not in exclude) | |
def lower(text): | |
return text.lower() | |
return white_space_fix(remove_articles(remove_punc(lower(s)))) | |
def compute_exact_match(prediction, truth): | |
return int(normalize_text(prediction) == normalize_text(truth)) | |
def compute_f1(prediction, truth): | |
pred_tokens = normalize_text(prediction).split() | |
truth_tokens = normalize_text(truth).split() | |
# if either the prediction or the truth is no-answer then f1 = 1 if they agree, 0 otherwise | |
if len(pred_tokens) == 0 or len(truth_tokens) == 0: | |
return int(pred_tokens == truth_tokens) | |
common_tokens = set(pred_tokens) & set(truth_tokens) | |
# if there are no common tokens then f1 = 0 | |
if len(common_tokens) == 0: | |
return 0 | |
prec = len(common_tokens) / len(pred_tokens) | |
rec = len(common_tokens) / len(truth_tokens) | |
return 2 * (prec * rec) / (prec + rec) | |
def is_date_or_num(answer): | |
answer = answer.lower().split() | |
for w in answer: | |
w = w.strip() | |
if w.isnumeric() or w in ["ngày", "tháng", "năm"]: | |
return True | |
return False | |
def find_best_cluster(answers, best_answer, thr=0.79): | |
if len(answers) == 0: # or best_answer not in answers: | |
return best_answer | |
elif len(answers) == 1: | |
return answers[0] | |
dists = np.zeros((len(answers), len(answers))) | |
for i in range(len(answers) - 1): | |
for j in range(i + 1, len(answers)): | |
a1 = answers[i].lower().strip() | |
a2 = answers[j].lower().strip() | |
if is_date_or_num(a1) or is_date_or_num(a2): | |
# print(a1, a2) | |
if a1 == a2 or ("tháng" in a1 and a1 in a2) or ("tháng" in a2 and a2 in a1): | |
dists[i, j] = 1 | |
dists[j, i] = 1 | |
# continue | |
elif a1 == a2 or (a1 in a2) or (a2 in a1) or compute_f1(a1.lower(), a2.lower()) >= thr: | |
dists[i, j] = 1 | |
dists[j, i] = 1 | |
# print(dists) | |
try: | |
thr = 1 | |
dups = np.where(dists >= thr) | |
dup_strs = [] | |
edges = [] | |
for i, j in zip(dups[0], dups[1]): | |
if i != j: | |
edges.append((i, j)) | |
G = nx.Graph() | |
for i, answer in enumerate(answers): | |
G.add_node(i, content=answer) | |
G.add_edges_from(edges) | |
partition = algorithms.louvain(G) | |
max_len_comm = np.max([len(x) for x in partition.communities]) | |
best_comms = [] | |
for comm in partition.communities: | |
# print([answers[i] for i in comm]) | |
if len(comm) == max_len_comm: | |
best_comms.append([answers[i] for i in comm]) | |
# if len(best_comms) > 1: | |
# return best_answer | |
for comm in best_comms: | |
if best_answer in comm: | |
return best_answer | |
mid = len(best_comms[0]) // 2 | |
# print(mid, sorted(best_comms[0], key = len)) | |
return sorted(best_comms[0], key=len)[mid] | |
except Exception as e: | |
print(e, "Disconnected graph") | |
return best_answer | |