leslyarun commited on
Commit
c3c2101
1 Parent(s): 5aabb05

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +23 -26
README.md CHANGED
@@ -1,50 +1,47 @@
1
  ---
2
- title: F_Beta
3
  datasets:
4
  -
5
  tags:
6
  - evaluate
7
  - metric
8
- description: "TODO: add a description here"
9
  sdk: gradio
10
  sdk_version: 3.0.2
11
  app_file: app.py
12
  pinned: false
13
  ---
14
 
15
- # Metric Card for F_Beta
16
 
17
  ***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.*
18
 
19
  ## Metric Description
20
- *Give a brief overview of this metric, including what task(s) it is usually used for, if any.*
 
 
21
 
22
  ## How to Use
23
- *Give general statement of how to use the metric*
24
 
25
- *Provide simplest possible example for using the metric*
 
 
 
26
 
27
- ### Inputs
28
- *List all input arguments in the format below*
29
- - **input_field** *(type): Definition of input, with explanation if necessary. State any default value(s).*
30
-
31
- ### Output Values
32
-
33
- *Explain what this metric outputs and provide an example of what the metric output looks like. Modules should return a dictionary with one or multiple key-value pairs, e.g. {"bleu" : 6.02}*
34
-
35
- *State the range of possible values that the metric's output can take, as well as what in that range is considered good. For example: "This metric can take on any value between 0 and 100, inclusive. Higher scores are better."*
36
-
37
- #### Values from Popular Papers
38
- *Give examples, preferrably with links to leaderboards or publications, to papers that have reported this metric, along with the values they have reported.*
39
-
40
- ### Examples
41
- *Give code examples of the metric being used. Try to include examples that clear up any potential ambiguity left from the metric description above. If possible, provide a range of examples that show both typical and atypical results, as well as examples where a variety of input parameters are passed.*
42
-
43
- ## Limitations and Bias
44
- *Note any known limitations or biases that the metric has, with links and references if possible.*
45
 
46
  ## Citation
47
- *Cite the source where this metric was introduced.*
 
 
 
 
 
 
 
 
 
48
 
49
  ## Further References
50
- *Add any useful further references.*
 
1
  ---
2
+ title: FBeta_Score
3
  datasets:
4
  -
5
  tags:
6
  - evaluate
7
  - metric
8
+ description: "Calculate FBeta_Score"
9
  sdk: gradio
10
  sdk_version: 3.0.2
11
  app_file: app.py
12
  pinned: false
13
  ---
14
 
15
+ # Metric Card for FBeta_Score
16
 
17
  ***Module Card Instructions:*** *Fill out the following subsections. Feel free to take a look at existing metric cards if you'd like examples.*
18
 
19
  ## Metric Description
20
+ *Compute the F-beta score.
21
+ The F-beta score is the weighted harmonic mean of precision and recall, reaching its optimal value at 1 and its worst value at 0.
22
+ The beta parameter determines the weight of recall in the combined score. beta < 1 lends more weight to precision, while beta > 1 favors recall (beta -> 0 considers only precision, beta -> +inf only recall).*
23
 
24
  ## How to Use
25
+ ``` python
26
 
27
+ f_beta = evaluate.load("leslyarun/f_beta")
28
+ results = f_beta.compute(references=[0, 1], predictions=[0, 1], beta=0.5)
29
+ print(results)
30
+ {'f_beta_score': 1.0}
31
 
32
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
 
34
  ## Citation
35
+ @article{scikit-learn,
36
+ title={Scikit-learn: Machine Learning in {P}ython},
37
+ author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.
38
+ and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.
39
+ and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and
40
+ Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},
41
+ journal={Journal of Machine Learning Research},
42
+ volume={12},
43
+ pages={2825--2830},
44
+ year={2011}
45
 
46
  ## Further References
47
+ https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html#sklearn.metrics.fbeta_score