Spaces:
Sleeping
Sleeping
import os | |
from langchain_huggingface import HuggingFaceEndpoint | |
import streamlit as st | |
from transformers import pipeline | |
from langchain_core.prompts import PromptTemplate | |
from langchain_core.output_parsers import StrOutputParser | |
from knowledge_base import load_knowledge_base, format_knowledge_base | |
# Load database | |
knowledge = load_knowledge_base("database.txt") | |
knowledge_context = format_knowledge_base(knowledge) | |
# Models and Pipeline | |
model_id="mistralai/Mistral-7B-Instruct-v0.3" | |
translation_model_id = "Helsinki-NLP/opus-mt-tc-big-en-pt" | |
# Chat parameters | |
first_ia_message = "Olá, quais são os seus sintomas?" | |
system_message = "You are a doctor who will help, based on the symptoms, and will give a diagnosis in Brazilian Portuguese. Your answer should be direct, simple and short, you can even ask a question to provide a more accurate answer. You should ask only about health. You should answer only questions about health." | |
text_placeholder = "Enter your text here." | |
text_waiting_ai_response = "Pensando..." | |
max_response_length = 256 | |
reset_button_label = "Reset Chat History" | |
chatbot_title = "ChatBot Sintomas" | |
chatbot_description = f"* Um chatbot de sintomas que usa os modelos {model_id} e {translation_model_id}.* Lembre-se de não confiar nesse chatbot, para casos reais um médico deverá ser consultado." | |
temperature = 0.1 | |
translation_pipeline = pipeline( | |
"translation_en_to_pt", | |
model=translation_model_id, | |
token=os.getenv("HF_TOKEN") | |
) | |
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=temperature): | |
llm = HuggingFaceEndpoint( | |
repo_id=model_id, | |
task="text-generation", | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
token = os.getenv("HF_TOKEN") | |
) | |
return llm | |
def translate_to_portuguese(text): | |
translation = translation_pipeline(text) | |
return translation[0]['translation_text'] | |
# Configure the Streamlit app | |
st.set_page_config(page_title=chatbot_title, page_icon="🤗") | |
st.title(chatbot_title) | |
st.markdown(chatbot_description) | |
# Initialize session state for avatars | |
if "avatars" not in st.session_state: | |
st.session_state.avatars = {'user': None, 'assistant': None} | |
# Initialize session state for user text input | |
if 'user_text' not in st.session_state: | |
st.session_state.user_text = None | |
# Initialize session state for model parameters | |
if "max_response_length" not in st.session_state: | |
st.session_state.max_response_length = max_response_length | |
# Sidebar for settings | |
with st.sidebar: | |
st.header("System Settings") | |
# AI Settings | |
st.session_state.system_message = st.text_area( | |
"System Message", value=system_message | |
) | |
st.session_state.starter_message = st.text_area( | |
'First AI Message', value=first_ia_message | |
) | |
# Model Settings | |
st.session_state.max_response_length = st.number_input( | |
"Max Response Length", value=max_response_length | |
) | |
# Reset Chat History | |
reset_history = st.button(reset_button_label) | |
# Initialize or reset chat history | |
if "chat_history" not in st.session_state or reset_history: | |
st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}] | |
def get_response(system_message, chat_history, user_text, | |
eos_token_id=['User'], max_new_tokens=max_response_length, get_llm_hf_kws={}): | |
# Set up model with token and temperature | |
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=temperature) | |
# Create the prompt template | |
prompt = PromptTemplate.from_template( | |
( | |
"[INST] {system_message}" | |
"{knowledge_context}\n" | |
"\nCurrent Conversation:\n{chat_history}\n\n" | |
"\nUser: {user_text}.\n [/INST]" | |
"\nAI:" | |
) | |
) | |
# Include knowledge database | |
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content') | |
response = chat.invoke(input={ | |
"system_message": system_message, | |
"knowledge_context": knowledge_context, | |
"user_text": user_text, | |
"chat_history": chat_history | |
}) | |
response = response.split("AI:")[-1] | |
response = translate_to_portuguese(response) | |
chat_history.append({'role': 'user', 'content': user_text}) | |
chat_history.append({'role': 'assistant', 'content': response}) | |
return response, chat_history | |
# Chat interface | |
chat_interface = st.container(border=True) | |
with chat_interface: | |
output_container = st.container() | |
st.session_state.user_text = st.chat_input(placeholder=text_placeholder) | |
# Display chat messages | |
with output_container: | |
for message in st.session_state.chat_history: | |
if message['role'] == 'system': | |
continue | |
with st.chat_message(message['role'], | |
avatar=st.session_state['avatars'][message['role']]): | |
st.markdown(message['content']) | |
# User new text: | |
if st.session_state.user_text: | |
with st.chat_message("user", | |
avatar=st.session_state.avatars['user']): | |
st.markdown(st.session_state.user_text) | |
with st.chat_message("assistant", | |
avatar=st.session_state.avatars['assistant']): | |
with st.spinner(text_waiting_ai_response): | |
response, st.session_state.chat_history = get_response( | |
system_message=st.session_state.system_message, | |
user_text=st.session_state.user_text, | |
chat_history=st.session_state.chat_history, | |
max_new_tokens=st.session_state.max_response_length, | |
) | |
st.markdown(response) |