Spaces:
Runtime error
Runtime error
Upload app (1).py
Browse files- app (1).py +112 -0
app (1).py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Reference
|
3 |
+
- https://docs.streamlit.io/library/api-reference/layout
|
4 |
+
- https://github.com/CodingMantras/yolov8-streamlit-detection-tracking/blob/master/app.py
|
5 |
+
- https://huggingface.co/keremberke/yolov8m-valorant-detection/tree/main
|
6 |
+
- https://docs.ultralytics.com/usage/python/
|
7 |
+
"""
|
8 |
+
import time
|
9 |
+
import PIL
|
10 |
+
|
11 |
+
import streamlit as st
|
12 |
+
import torch
|
13 |
+
from ultralyticsplus import YOLO, render_result
|
14 |
+
|
15 |
+
from convert import convert_to_braille_unicode, parse_xywh_and_class
|
16 |
+
|
17 |
+
|
18 |
+
def load_model(model_path):
|
19 |
+
"""load model from path"""
|
20 |
+
model = YOLO(model_path)
|
21 |
+
return model
|
22 |
+
|
23 |
+
|
24 |
+
def load_image(image_path):
|
25 |
+
"""load image from path"""
|
26 |
+
image = PIL.Image.open(image_path)
|
27 |
+
return image
|
28 |
+
|
29 |
+
|
30 |
+
# title
|
31 |
+
st.title("Braille Pattern Detection")
|
32 |
+
|
33 |
+
# sidebar
|
34 |
+
st.sidebar.header("Detection Config")
|
35 |
+
|
36 |
+
conf = float(st.sidebar.slider("Class Confidence", 10, 75, 15)) / 100
|
37 |
+
iou = float(st.sidebar.slider("IoU Threshold", 10, 75, 15)) / 100
|
38 |
+
|
39 |
+
model_path = "snoop2head/yolov8m-braille"
|
40 |
+
|
41 |
+
try:
|
42 |
+
model = load_model(model_path)
|
43 |
+
model.overrides["conf"] = conf # NMS confidence threshold
|
44 |
+
model.overrides["iou"] = iou # NMS IoU threshold
|
45 |
+
model.overrides["agnostic_nms"] = False # NMS class-agnostic
|
46 |
+
model.overrides["max_det"] = 1000 # maximum number of detections per image
|
47 |
+
|
48 |
+
except Exception as ex:
|
49 |
+
print(ex)
|
50 |
+
st.write(f"Unable to load model. Check the specified path: {model_path}")
|
51 |
+
|
52 |
+
source_img = None
|
53 |
+
|
54 |
+
source_img = st.sidebar.file_uploader(
|
55 |
+
"Choose an image...", type=("jpg", "jpeg", "png", "bmp", "webp")
|
56 |
+
)
|
57 |
+
col1, col2 = st.columns(2)
|
58 |
+
|
59 |
+
# left column of the page body
|
60 |
+
with col1:
|
61 |
+
if source_img is None:
|
62 |
+
default_image_path = "./images/alpha-numeric.jpeg"
|
63 |
+
image = load_image(default_image_path)
|
64 |
+
st.image(
|
65 |
+
default_image_path, caption="Example Input Image", use_column_width=True
|
66 |
+
)
|
67 |
+
else:
|
68 |
+
image = load_image(source_img)
|
69 |
+
st.image(source_img, caption="Uploaded Image", use_column_width=True)
|
70 |
+
|
71 |
+
# right column of the page body
|
72 |
+
with col2:
|
73 |
+
with st.spinner("Wait for it..."):
|
74 |
+
start_time = time.time()
|
75 |
+
try:
|
76 |
+
with torch.no_grad():
|
77 |
+
res = model.predict(
|
78 |
+
image, save=True, save_txt=True, exist_ok=True, conf=conf
|
79 |
+
)
|
80 |
+
boxes = res[0].boxes # first image
|
81 |
+
res_plotted = res[0].plot()[:, :, ::-1]
|
82 |
+
|
83 |
+
list_boxes = parse_xywh_and_class(boxes)
|
84 |
+
|
85 |
+
st.image(res_plotted, caption="Detected Image", use_column_width=True)
|
86 |
+
IMAGE_DOWNLOAD_PATH = f"runs/detect/predict/image0.jpg"
|
87 |
+
|
88 |
+
except Exception as ex:
|
89 |
+
st.write("Please upload image with types of JPG, JPEG, PNG ...")
|
90 |
+
|
91 |
+
|
92 |
+
try:
|
93 |
+
st.success(f"Done! Inference time: {time.time() - start_time:.2f} seconds")
|
94 |
+
st.subheader("Detected Braille Patterns")
|
95 |
+
for box_line in list_boxes:
|
96 |
+
str_left_to_right = ""
|
97 |
+
box_classes = box_line[:, -1]
|
98 |
+
for each_class in box_classes:
|
99 |
+
str_left_to_right += convert_to_braille_unicode(
|
100 |
+
model.names[int(each_class)]
|
101 |
+
)
|
102 |
+
st.write(str_left_to_right)
|
103 |
+
except Exception as ex:
|
104 |
+
st.write("Please try again with images with types of JPG, JPEG, PNG ...")
|
105 |
+
|
106 |
+
with open(IMAGE_DOWNLOAD_PATH, "rb") as fl:
|
107 |
+
st.download_button(
|
108 |
+
"Download object-detected image",
|
109 |
+
data=fl,
|
110 |
+
file_name="image0.jpg",
|
111 |
+
mime="image/jpg",
|
112 |
+
)
|