Spaces:
Running
Running
Update function.py
Browse files- function.py +44 -36
function.py
CHANGED
@@ -1,62 +1,74 @@
|
|
1 |
from transformers import pipeline
|
2 |
import torch
|
3 |
-
|
4 |
-
import soundfile as sf
|
5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, VitsModel
|
6 |
import numpy as np
|
7 |
import re
|
8 |
|
9 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def img2text(url):
|
11 |
-
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
12 |
text = image_to_text_model(url)[0]["generated_text"]
|
13 |
-
|
14 |
-
# Remove art-related words to make the description more neutral
|
15 |
for word in ["illustration", "drawing", "painting", "rendering"]:
|
16 |
text = text.replace(word, "").strip()
|
17 |
-
|
18 |
return text
|
19 |
|
20 |
-
|
|
|
|
|
|
|
21 |
def text2story(caption):
|
22 |
"""
|
23 |
-
Generates a child-friendly story (
|
24 |
-
|
25 |
"""
|
26 |
-
tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
27 |
-
model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
28 |
-
|
29 |
-
# Prompt to guide the model
|
30 |
prompt = (
|
31 |
-
f"Write a short, cheerful story for a 5-year-old
|
32 |
-
f"
|
33 |
)
|
34 |
|
35 |
-
inputs =
|
36 |
|
37 |
-
outputs =
|
38 |
inputs.input_ids,
|
39 |
-
max_length=
|
40 |
do_sample=True,
|
41 |
top_p=0.95,
|
42 |
-
temperature=0.
|
43 |
-
pad_token_id=
|
44 |
)
|
45 |
|
46 |
-
output_text =
|
47 |
|
48 |
# Remove prompt prefix if present
|
49 |
if "Story:" in output_text:
|
50 |
output_text = output_text.split("Story:")[-1].strip()
|
51 |
|
52 |
-
#
|
53 |
word_list = output_text.split()
|
54 |
-
cut_text = " ".join(word_list[:130]) #
|
55 |
|
56 |
sentences = re.split(r'(?<=[.!?])\s+', cut_text)
|
57 |
-
|
58 |
trimmed_story = ""
|
59 |
total_words = 0
|
|
|
60 |
for sentence in sentences:
|
61 |
sentence = sentence.strip()
|
62 |
word_count = len(sentence.split())
|
@@ -68,7 +80,6 @@ def text2story(caption):
|
|
68 |
|
69 |
story = trimmed_story.strip()
|
70 |
|
71 |
-
# If no sentence-ending punctuation found, just force cut at 100 words
|
72 |
if not story:
|
73 |
story = " ".join(word_list[:100])
|
74 |
if not story.endswith(('.', '!', '?')):
|
@@ -76,20 +87,17 @@ def text2story(caption):
|
|
76 |
|
77 |
return story
|
78 |
|
79 |
-
# Convert text story into audio using a speech synthesis model
|
80 |
-
def text2audio(story_text):
|
81 |
-
model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
82 |
-
tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
83 |
-
|
84 |
-
inputs = tokenizer(story_text, return_tensors="pt")
|
85 |
|
86 |
-
|
87 |
-
|
|
|
|
|
|
|
|
|
88 |
|
89 |
with torch.no_grad():
|
90 |
-
output =
|
91 |
|
92 |
-
# Convert tensor to NumPy array and save it as a .wav file
|
93 |
audio_np = output.squeeze().cpu().numpy()
|
94 |
output_path = "generated_audio.wav"
|
95 |
sf.write(output_path, audio_np, 22050)
|
|
|
1 |
from transformers import pipeline
|
2 |
import torch
|
3 |
+
import soundfile as sf
|
|
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, VitsModel
|
5 |
import numpy as np
|
6 |
import re
|
7 |
|
8 |
+
# ====================
|
9 |
+
# Load models globally
|
10 |
+
# ====================
|
11 |
+
|
12 |
+
# Image captioning pipeline
|
13 |
+
image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large")
|
14 |
+
|
15 |
+
# Story generation model (DistilGPT2)
|
16 |
+
story_tokenizer = AutoTokenizer.from_pretrained("distilgpt2")
|
17 |
+
story_model = AutoModelForCausalLM.from_pretrained("distilgpt2")
|
18 |
+
|
19 |
+
# Text-to-speech model (Facebook MMS)
|
20 |
+
tts_model = VitsModel.from_pretrained("facebook/mms-tts-eng")
|
21 |
+
tts_tokenizer = AutoTokenizer.from_pretrained("facebook/mms-tts-eng")
|
22 |
+
|
23 |
+
|
24 |
+
# ====================
|
25 |
+
# Function 1: Image → Text
|
26 |
+
# ====================
|
27 |
def img2text(url):
|
|
|
28 |
text = image_to_text_model(url)[0]["generated_text"]
|
|
|
|
|
29 |
for word in ["illustration", "drawing", "painting", "rendering"]:
|
30 |
text = text.replace(word, "").strip()
|
|
|
31 |
return text
|
32 |
|
33 |
+
|
34 |
+
# ====================
|
35 |
+
# Function 2: Text → Story
|
36 |
+
# ====================
|
37 |
def text2story(caption):
|
38 |
"""
|
39 |
+
Generates a child-friendly story (up to 100 words) from a given image caption.
|
40 |
+
Uses DistilGPT2 for fast story generation.
|
41 |
"""
|
|
|
|
|
|
|
|
|
42 |
prompt = (
|
43 |
+
f"Write a short, cheerful story for a 5-year-old. The story must mention {caption}. "
|
44 |
+
f"The characters and location should be entirely based on {caption}.\n\nStory:"
|
45 |
)
|
46 |
|
47 |
+
inputs = story_tokenizer(prompt, return_tensors="pt")
|
48 |
|
49 |
+
outputs = story_model.generate(
|
50 |
inputs.input_ids,
|
51 |
+
max_length=120, # faster than 200, still enough for ~90 words
|
52 |
do_sample=True,
|
53 |
top_p=0.95,
|
54 |
+
temperature=0.8,
|
55 |
+
pad_token_id=story_tokenizer.eos_token_id
|
56 |
)
|
57 |
|
58 |
+
output_text = story_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
59 |
|
60 |
# Remove prompt prefix if present
|
61 |
if "Story:" in output_text:
|
62 |
output_text = output_text.split("Story:")[-1].strip()
|
63 |
|
64 |
+
# Trim to 100 words max, cutting at sentence boundaries
|
65 |
word_list = output_text.split()
|
66 |
+
cut_text = " ".join(word_list[:130]) # small buffer
|
67 |
|
68 |
sentences = re.split(r'(?<=[.!?])\s+', cut_text)
|
|
|
69 |
trimmed_story = ""
|
70 |
total_words = 0
|
71 |
+
|
72 |
for sentence in sentences:
|
73 |
sentence = sentence.strip()
|
74 |
word_count = len(sentence.split())
|
|
|
80 |
|
81 |
story = trimmed_story.strip()
|
82 |
|
|
|
83 |
if not story:
|
84 |
story = " ".join(word_list[:100])
|
85 |
if not story.endswith(('.', '!', '?')):
|
|
|
87 |
|
88 |
return story
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
+
# ====================
|
92 |
+
# Function 3: Story → Audio
|
93 |
+
# ====================
|
94 |
+
def text2audio(story_text):
|
95 |
+
inputs = tts_tokenizer(story_text, return_tensors="pt")
|
96 |
+
inputs["input_ids"] = inputs["input_ids"].long() # Ensure correct type for VitsModel
|
97 |
|
98 |
with torch.no_grad():
|
99 |
+
output = tts_model(**inputs).waveform
|
100 |
|
|
|
101 |
audio_np = output.squeeze().cpu().numpy()
|
102 |
output_path = "generated_audio.wav"
|
103 |
sf.write(output_path, audio_np, 22050)
|