Spaces:
Sleeping
Sleeping
from gradio import inputs | |
import torch | |
import numpy as np | |
import torchvision as tv | |
import gradio as gr | |
model = tv.models.efficientnet_b0() | |
num_ftrs = model.classifier[1].in_features | |
model.classifier[1] = torch.nn.Linear(num_ftrs, 21) | |
model.load_state_dict(torch.load('model/model_ep=1_acc=0.8909620610367893.pt', map_location = torch.device('cpu'))) | |
model.eval() | |
classes_to_idx = {'Accenteur mouchet': 0, | |
'Bouvreuil pivoine': 1, | |
'Chardonneret élégant': 2, | |
'Ecureuil roux': 3, | |
'Geai des chênes': 4, | |
'Grosbec casse-noyaux': 5, | |
'Merle noir': 6, | |
'Moineau domestique': 7, | |
'Moineau friquet': 8, | |
'Mésange Nonnette': 9, | |
'Mésange bleue': 10, | |
'Mésange charbonnière': 11, | |
'Mésange huppée': 12, | |
'Mésange noire': 13, | |
'Pic épeiche': 14, | |
'Pinson des arbres': 15, | |
'Pinson du Nord': 16, | |
'Rougegorge familier': 17, | |
'Sittelle torchepot': 18, | |
'Tourterelle turque': 19, | |
"Verdier d'Europe": 20} | |
classes = list(classes_to_idx.keys()) | |
preprocess = tv.transforms.Compose([ | |
tv.transforms.Resize((270, 359)), | |
tv.transforms.ToTensor() | |
#tv.transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
from PIL import Image | |
def classidy_bird(image): | |
inputs = preprocess(image).unsqueeze(0) | |
inputs = inputs.to(torch.device('cpu')) | |
pred = torch.nn.functional.softmax(model(inputs), dim = 1).detach().numpy()[0] | |
return {classes[i] : float(pred[i]) for i in range(21)} | |
image = gr.inputs.Image(type="pil", shape=(270, 359)) | |
label = gr.outputs.Label(num_top_classes=3) | |
title = "Poids Plume Classifier" | |
examples = ['examples/mesange-charbonniere.jpg', 'examples/merle-noir.jpg', 'examples/tourterelle-turque.jpg'] | |
gr.Interface(fn = classidy_bird, inputs=image, outputs=label, capture_session=True, examples=examples, title=title).launch() | |