leonhardt's picture
Update app.py
d672883
raw
history blame
1.32 kB
import gradio as gr
import pandas as pd
import torch
from torchvision.transforms import transforms
from get_loader import Vocabulary
from model import CNNtoRNN
def predict(img):
img = transform(img)
output = model.caption_image(img.unsqueeze(0).to(device), vocab)
return " ".join(output[1:-1])
if __name__ == '__main__':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = CNNtoRNN(
embed_size=256,
hidden_size=256,
vocab_size=2994,
num_layers=1
)
print('Loading model weights...')
model.load_state_dict(torch.load(
'my_checkpoint.pth.tar', map_location=device)["state_dict"])
model.to(device)
model.eval()
print('Building vocabulary...')
vocab = Vocabulary(5)
df = pd.read_csv('captions.txt')
vocab.build_vocabulary(df['caption'].tolist())
transform = transforms.Compose(
[
transforms.ToPILImage(),
transforms.Resize((299, 299)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
)
print('Creating app...')
app = gr.Interface(
fn=predict,
inputs=gr.Image(shape=(256, 256)),
outputs="text",
)
print('done!')
app.launch(
share=True,
)