| import mediapy | |
| import gradio as gr | |
| from utils import load_image | |
| from interpolator import Interpolator, interpolate_recursively | |
| path = "./smoot.mp4" | |
| interpolator = Interpolator() | |
| def predict(image_a, image_b, preview): | |
| image1 = load_image(image_a) | |
| image2 = load_image(image_b) | |
| input_frames = [image1, image2] | |
| if preview: | |
| fps = 3 | |
| frames = interpolator.preview_frames(input_frames) | |
| else: | |
| fps = 30 | |
| frames = list(interpolate_recursively(input_frames, interpolator)) | |
| mediapy.write_video(path, frames, fps=fps) | |
| return path | |
| footer = r""" | |
| <center> | |
| <b> | |
| Demo for <a href='https://www.tensorflow.org/hub/tutorials/tf_hub_film_example'>FILM model</a> | |
| </b> | |
| </center> | |
| """ | |
| coffe = r""" | |
| <center> | |
| <a href="https://www.buymeacoffee.com/leonelhs"><img src="https://img.buymeacoffee.com/button-api/?text=Buy me a | |
| coffee&emoji=&slug=leonelhs&button_colour=FFDD00&font_colour=000000&font_family=Cookie&outline_colour=000000 | |
| &coffee_colour=ffffff" /></a> | |
| </center> | |
| """ | |
| with gr.Blocks(title="FILM") as app: | |
| gr.HTML("<center><h1>Frame interpolation using the FILM model</h1></center>") | |
| gr.HTML("<center><h3>Frame interpolation is the task of synthesizing many in-between images from a given set of " | |
| "images. The technique is often used for frame rate upsampling or creating slow-motion video " | |
| "effects.</h3></center>") | |
| with gr.Row(equal_height=False): | |
| with gr.Column(): | |
| with gr.Row(equal_height=True): | |
| with gr.Column(): | |
| input_img_a = gr.Image(type="filepath", label="Input image A") | |
| with gr.Column(): | |
| input_img_b = gr.Image(type="filepath", label="Input image B") | |
| pre = gr.Checkbox(label="Preview", value=True, info="Run in preview mode video") | |
| run_btn = gr.Button(variant="primary") | |
| with gr.Column(): | |
| output_img = gr.Video(format="mp4", label="Interpolate video", autoplay=True) | |
| gr.ClearButton(components=[input_img_a, input_img_b, output_img], variant="stop") | |
| run_btn.click(predict, [input_img_a, input_img_b, pre], [output_img]) | |
| with gr.Row(): | |
| blobs_a = [[f"examples/image_a/{x:02d}.jpg"] for x in range(1, 2)] | |
| examples_a = gr.Dataset(components=[input_img_a], samples=blobs_a) | |
| examples_a.click(lambda x: x[0], [examples_a], [input_img_a]) | |
| with gr.Row(): | |
| blobs_b = [[f"examples/image_b/{x:02d}.jpg"] for x in range(1, 2)] | |
| examples_b = gr.Dataset(components=[input_img_b], samples=blobs_b) | |
| examples_b.click(lambda x: x[0], [examples_b], [input_img_b]) | |
| with gr.Row(): | |
| gr.HTML(footer) | |
| with gr.Row(): | |
| gr.HTML(coffe) | |
| app.launch(share=False, debug=True, show_error=True) | |
| app.queue() | |