film / interpolator.py
leonelhs's picture
add options
76ccfaa
raw
history blame
5.68 kB
from typing import Generator, List, Iterable
import numpy as np
import tensorflow as tf
from huggingface_hub import snapshot_download
"""A wrapper class for running a frame interpolation based on the FILM model on TFHub
Usage:
interpolator = Interpolator()
result_batch = interpolator(image_batch_0, image_batch_1, batch_dt)
Where image_batch_1 and image_batch_2 are numpy tensors with TF standard
(B,H,W,C) layout, batch_dt is the sub-frame time in range [0..1], (B,) layout.
"""
FILM_REPO_ID = "leonelhs/film"
def _pad_to_align(x, align):
"""Pads image batch x so width and height divide by align.
Args:
x: Image batch to align.
align: Number to align to.
Returns:
1) An image padded so width % align == 0 and height % align == 0.
2) A bounding box that can be fed readily to tf.image.crop_to_bounding_box
to undo the padding.
"""
# Input checking.
assert np.ndim(x) == 4
assert align > 0, 'align must be a positive number.'
height, width = x.shape[-3:-1]
height_to_pad = (align - height % align) if height % align != 0 else 0
width_to_pad = (align - width % align) if width % align != 0 else 0
bbox_to_pad = {
'offset_height': height_to_pad // 2,
'offset_width': width_to_pad // 2,
'target_height': height + height_to_pad,
'target_width': width + width_to_pad
}
padded_x = tf.image.pad_to_bounding_box(x, **bbox_to_pad)
bbox_to_crop = {
'offset_height': height_to_pad // 2,
'offset_width': width_to_pad // 2,
'target_height': height,
'target_width': width
}
return padded_x, bbox_to_crop
class Interpolator:
"""A class for generating interpolated frames between two input frames.
Uses the Film model from TFHub
"""
def __init__(self, times_to_interpolate=6, align: int = 64) -> None:
"""Loads a saved model.
Args:
align: 'If >1, pad the input size so it divides with this before
inference.'
"""
self.times_to_interpolate = times_to_interpolate
model_path = snapshot_download(FILM_REPO_ID)
self._model = tf.saved_model.load(model_path)
# self._model = hub.load("https://tfhub.dev/google/film/1")
self._align = align
def __call__(self, x0: np.ndarray, x1: np.ndarray,
dt: np.ndarray) -> np.ndarray:
"""Generates an interpolated frame between given two batches of frames.
All inputs should be np.float32 datatype.
Args:
x0: First image batch. Dimensions: (batch_size, height, width, channels)
x1: Second image batch. Dimensions: (batch_size, height, width, channels)
dt: Sub-frame time. Range [0,1]. Dimensions: (batch_size,)
Returns:
The result with dimensions (batch_size, height, width, channels).
"""
if self._align is not None:
x0, bbox_to_crop = _pad_to_align(x0, self._align)
x1, _ = _pad_to_align(x1, self._align)
inputs = {'x0': x0, 'x1': x1, 'time': dt[..., np.newaxis]}
result = self._model(inputs, training=False)
image = result['image']
if self._align is not None:
image = tf.image.crop_to_bounding_box(image, **bbox_to_crop)
return image.numpy()
def preview_frames(self, frames: List[np.ndarray]):
time = np.array([0.5], dtype=np.float32)
media_input = {
'time': np.expand_dims(time, axis=0), # adding the batch dimension to the time
'x0': np.expand_dims(frames[0], axis=0), # adding the batch dimension to the image
'x1': np.expand_dims(frames[1], axis=0) # adding the batch dimension to the image
}
mid = self._model(media_input)
return [frames[0], mid['image'][0].numpy(), frames[1]]
def _recursive_generator(
frame1: np.ndarray, frame2: np.ndarray, num_recursions: int,
interpolator: Interpolator) -> Generator[np.ndarray, None, None]:
"""Splits halfway to repeatedly generate more frames.
Args:
frame1: Input image 1.
frame2: Input image 2.
num_recursions: How many times to interpolate the consecutive image pairs.
interpolator: The frame interpolator instance.
Yields:
The interpolated frames, including the first frame (frame1), but excluding
the final frame2.
"""
if num_recursions == 0:
yield frame1
else:
# Adds the batch dimension to all inputs before calling the interpolator,
# and remove it afterwards.
time = np.full(shape=(1,), fill_value=0.5, dtype=np.float32)
mid_frame = interpolator(np.expand_dims(frame1, axis=0), np.expand_dims(frame2, axis=0), time)[0]
yield from _recursive_generator(frame1, mid_frame, num_recursions - 1, interpolator)
yield from _recursive_generator(mid_frame, frame2, num_recursions - 1, interpolator)
def interpolate_recursively(
frames: List[np.ndarray], interpolator: Interpolator) -> Iterable[np.ndarray]:
"""Generates interpolated frames by repeatedly interpolating the midpoint.
Args:
frames: List of input frames. Expected shape (H, W, 3). The colors should be
in the range[0, 1] and in gamma space.
num_recursions: Number of times to do recursive midpoint
interpolation.
interpolator: The frame interpolation model to use.
Yields:
The interpolated frames (including the inputs).
"""
times_to_interpolate = interpolator.times_to_interpolate
n = len(frames)
for i in range(1, n):
yield from _recursive_generator(frames[i - 1], frames[i], times_to_interpolate, interpolator)
# Separately yield the final frame.
yield frames[-1]