simplify code
Browse files- app.py +36 -95
- examples.py +0 -25
app.py
CHANGED
@@ -1,133 +1,74 @@
|
|
1 |
import os
|
2 |
|
3 |
-
import cv2
|
4 |
import gradio as gr
|
5 |
import torch
|
6 |
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
7 |
from gfpgan.utils import GFPGANer
|
8 |
-
from huggingface_hub import
|
9 |
from realesrgan.utils import RealESRGANer
|
10 |
-
import examples
|
11 |
|
12 |
REALESRGAN_REPO_ID = 'leonelhs/realesrgan'
|
13 |
GFPGAN_REPO_ID = 'leonelhs/gfpgan'
|
14 |
|
15 |
os.system("pip freeze")
|
16 |
|
17 |
-
examples.download()
|
18 |
-
|
19 |
# background enhancer with RealESRGAN
|
20 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
21 |
model_path = hf_hub_download(repo_id=REALESRGAN_REPO_ID, filename='realesr-general-x4v3.pth')
|
22 |
half = True if torch.cuda.is_available() else False
|
23 |
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
24 |
|
25 |
-
os.makedirs('output', exist_ok=True)
|
26 |
-
|
27 |
-
|
28 |
-
# def inference(img, version, scale, weight):
|
29 |
-
def predict(img, version, scale):
|
30 |
-
# weight /= 100
|
31 |
-
print(img, version, scale)
|
32 |
-
if scale > 4:
|
33 |
-
scale = 4 # avoid too large scale value
|
34 |
-
try:
|
35 |
-
extension = os.path.splitext(os.path.basename(str(img)))[1]
|
36 |
-
img = cv2.imread(img, cv2.IMREAD_UNCHANGED)
|
37 |
-
if len(img.shape) == 3 and img.shape[2] == 4:
|
38 |
-
img_mode = 'RGBA'
|
39 |
-
elif len(img.shape) == 2: # for gray inputs
|
40 |
-
img_mode = None
|
41 |
-
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
|
42 |
-
else:
|
43 |
-
img_mode = None
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
print('too large size')
|
48 |
-
return None, None
|
49 |
|
50 |
-
if h < 300:
|
51 |
-
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
|
52 |
|
53 |
-
|
54 |
-
|
|
|
55 |
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
bg_upsampler=upsampler)
|
73 |
|
74 |
-
|
75 |
-
_, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True)
|
76 |
-
except RuntimeError as error:
|
77 |
-
print('Error', error)
|
78 |
|
79 |
-
|
80 |
-
if scale != 2:
|
81 |
-
interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4
|
82 |
-
h, w = img.shape[0:2]
|
83 |
-
output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation)
|
84 |
-
except Exception as error:
|
85 |
-
print('wrong scale input.', error)
|
86 |
-
if img_mode == 'RGBA': # RGBA images should be saved in png format
|
87 |
-
extension = 'png'
|
88 |
-
else:
|
89 |
-
extension = 'jpg'
|
90 |
-
save_path = f'output/out.{extension}'
|
91 |
-
cv2.imwrite(save_path, output)
|
92 |
|
93 |
-
output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB)
|
94 |
-
return output, save_path
|
95 |
-
except Exception as error:
|
96 |
-
print('global exception', error)
|
97 |
-
return None, None
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
It can be used to restore your **old photos** or improve **AI-generated faces**.<br>
|
103 |
-
To use it, simply upload your image.<br>
|
104 |
-
If GFPGAN is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo</a> and recommend it to your friends 😊
|
105 |
"""
|
106 |
article = r"""
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
[![arXiv](https://img.shields.io/badge/arXiv-Paper-<COLOR>.svg)](https://arxiv.org/abs/2101.04061)
|
111 |
-
|
112 |
-
If you have any question, please email 📧 `xintao.wang@outlook.com` or `xintaowang@tencent.com`.
|
113 |
-
|
114 |
-
<center><img src='https://visitor-badge.glitch.me/badge?page_id=akhaliq_GFPGAN' alt='visitor badge'></center>
|
115 |
-
<center><img src='https://visitor-badge.glitch.me/badge?page_id=Gradio_Xintao_GFPGAN' alt='visitor badge'></center>
|
116 |
"""
|
|
|
117 |
demo = gr.Interface(
|
118 |
predict, [
|
119 |
-
gr.Image(type="
|
120 |
gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], type="value", value='v1.4', label='version'),
|
121 |
-
gr.
|
122 |
], [
|
123 |
-
gr.Image(type="numpy", label="Output
|
124 |
-
gr.File(label="Download the output image")
|
125 |
],
|
126 |
title=title,
|
127 |
description=description,
|
128 |
-
article=article
|
129 |
-
|
130 |
-
['lincoln.jpg', 'v1.4', 2],
|
131 |
-
['Blake_Lively.jpg', 'v1.4', 2],
|
132 |
-
['10045.png', 'v1.4', 2]])
|
133 |
demo.queue().launch()
|
|
|
1 |
import os
|
2 |
|
|
|
3 |
import gradio as gr
|
4 |
import torch
|
5 |
from basicsr.archs.srvgg_arch import SRVGGNetCompact
|
6 |
from gfpgan.utils import GFPGANer
|
7 |
+
from huggingface_hub import hf_hub_download
|
8 |
from realesrgan.utils import RealESRGANer
|
|
|
9 |
|
10 |
REALESRGAN_REPO_ID = 'leonelhs/realesrgan'
|
11 |
GFPGAN_REPO_ID = 'leonelhs/gfpgan'
|
12 |
|
13 |
os.system("pip freeze")
|
14 |
|
|
|
|
|
15 |
# background enhancer with RealESRGAN
|
16 |
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
|
17 |
model_path = hf_hub_download(repo_id=REALESRGAN_REPO_ID, filename='realesr-general-x4v3.pth')
|
18 |
half = True if torch.cuda.is_available() else False
|
19 |
upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half)
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
def download_model(file):
|
23 |
+
return hf_hub_download(repo_id=GFPGAN_REPO_ID, filename=file)
|
|
|
|
|
24 |
|
|
|
|
|
25 |
|
26 |
+
def predict(image, version, scale):
|
27 |
+
scale = int(scale)
|
28 |
+
face_enhancer = None
|
29 |
|
30 |
+
if version == 'v1.2':
|
31 |
+
path = download_model('GFPGANv1.2.pth')
|
32 |
+
face_enhancer = GFPGANer(
|
33 |
+
model_path=path, upscale=scale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
34 |
+
elif version == 'v1.3':
|
35 |
+
path = download_model('GFPGANv1.3.pth')
|
36 |
+
face_enhancer = GFPGANer(
|
37 |
+
model_path=path, upscale=scale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
38 |
+
elif version == 'v1.4':
|
39 |
+
path = download_model('GFPGANv1.4.pth')
|
40 |
+
face_enhancer = GFPGANer(
|
41 |
+
model_path=path, upscale=scale, arch='clean', channel_multiplier=2, bg_upsampler=upsampler)
|
42 |
+
elif version == 'RestoreFormer':
|
43 |
+
path = download_model('RestoreFormer.pth')
|
44 |
+
face_enhancer = GFPGANer(
|
45 |
+
model_path=path, upscale=scale, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler)
|
|
|
46 |
|
47 |
+
_, _, output = face_enhancer.enhance(image, has_aligned=False, only_center_face=False, paste_back=True)
|
|
|
|
|
|
|
48 |
|
49 |
+
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
title = "GFPGAN"
|
53 |
+
description = r"""
|
54 |
+
<b>Practical Face Restoration Algorithm</b>
|
|
|
|
|
|
|
55 |
"""
|
56 |
article = r"""
|
57 |
+
<center><span>xintao.wang@outlook.com or xintaowang@tencent.com</span></center>
|
58 |
+
</br>
|
59 |
+
<center><a href='https://github.com/TencentARC/GFPGAN' target='_blank'>Github Repo ⭐ </a> are welcome</center>
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
"""
|
61 |
+
|
62 |
demo = gr.Interface(
|
63 |
predict, [
|
64 |
+
gr.Image(type="numpy", label="Input"),
|
65 |
gr.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer'], type="value", value='v1.4', label='version'),
|
66 |
+
gr.Dropdown(["1", "2", "3", "4"], value="2", label="Rescaling factor")
|
67 |
], [
|
68 |
+
gr.Image(type="numpy", label="Output", interactive=False)
|
|
|
69 |
],
|
70 |
title=title,
|
71 |
description=description,
|
72 |
+
article=article)
|
73 |
+
|
|
|
|
|
|
|
74 |
demo.queue().launch()
|
examples.py
DELETED
@@ -1,25 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
|
3 |
-
examples = [
|
4 |
-
{
|
5 |
-
'name': 'lincoln.jpg',
|
6 |
-
'url': 'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg'
|
7 |
-
},
|
8 |
-
{
|
9 |
-
'name': 'AI-generate.jpg',
|
10 |
-
'url': 'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg'
|
11 |
-
},
|
12 |
-
{
|
13 |
-
'name': 'Blake_Lively.jpg',
|
14 |
-
'url': 'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg'
|
15 |
-
},
|
16 |
-
{
|
17 |
-
'name': '10045.png',
|
18 |
-
'url': 'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png'
|
19 |
-
}
|
20 |
-
]
|
21 |
-
|
22 |
-
|
23 |
-
def download():
|
24 |
-
for example in examples:
|
25 |
-
torch.hub.download_url_to_file(example['url'], example['name'])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|