Spaces:
Running
Running
add composite feature
Browse files- app.py +5 -83
- requirements.txt +2 -0
app.py
CHANGED
@@ -1,13 +1,9 @@
|
|
1 |
# demo source from: https://github.com/MarcoForte/FBA_Matting
|
2 |
-
|
3 |
-
import cv2
|
4 |
import gradio as gr
|
5 |
-
|
6 |
-
import torch
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
|
9 |
from networks.models import build_model
|
10 |
-
from networks.transforms import trimap_transform, normalise_image
|
11 |
|
12 |
REPO_ID = "leonelhs/FBA-Matting"
|
13 |
|
@@ -16,83 +12,8 @@ model = build_model(weights)
|
|
16 |
model.eval().cpu()
|
17 |
|
18 |
|
19 |
-
def np_to_torch(x, permute=True):
|
20 |
-
if permute:
|
21 |
-
return torch.from_numpy(x).permute(2, 0, 1)[None, :, :, :].float().cpu()
|
22 |
-
else:
|
23 |
-
return torch.from_numpy(x)[None, :, :, :].float().cpu()
|
24 |
-
|
25 |
-
|
26 |
-
def scale_input(x: np.ndarray, scale: float, scale_type) -> np.ndarray:
|
27 |
-
''' Scales inputs to multiple of 8. '''
|
28 |
-
h, w = x.shape[:2]
|
29 |
-
h1 = int(np.ceil(scale * h / 8) * 8)
|
30 |
-
w1 = int(np.ceil(scale * w / 8) * 8)
|
31 |
-
x_scale = cv2.resize(x, (w1, h1), interpolation=scale_type)
|
32 |
-
return x_scale
|
33 |
-
|
34 |
-
|
35 |
-
def inference(image_np: np.ndarray, trimap_np: np.ndarray) -> [np.ndarray]:
|
36 |
-
''' Predict alpha, foreground and background.
|
37 |
-
Parameters:
|
38 |
-
image_np -- the image in rgb format between 0 and 1. Dimensions: (h, w, 3)
|
39 |
-
trimap_np -- two channel trimap, first background then foreground. Dimensions: (h, w, 2)
|
40 |
-
Returns:
|
41 |
-
fg: foreground image in rgb format between 0 and 1. Dimensions: (h, w, 3)
|
42 |
-
bg: background image in rgb format between 0 and 1. Dimensions: (h, w, 3)
|
43 |
-
alpha: alpha matte image between 0 and 1. Dimensions: (h, w)
|
44 |
-
'''
|
45 |
-
h, w = trimap_np.shape[:2]
|
46 |
-
image_scale_np = scale_input(image_np, 1.0, cv2.INTER_LANCZOS4)
|
47 |
-
trimap_scale_np = scale_input(trimap_np, 1.0, cv2.INTER_LANCZOS4)
|
48 |
-
|
49 |
-
with torch.no_grad():
|
50 |
-
image_torch = np_to_torch(image_scale_np)
|
51 |
-
trimap_torch = np_to_torch(trimap_scale_np)
|
52 |
-
|
53 |
-
trimap_transformed_torch = np_to_torch(
|
54 |
-
trimap_transform(trimap_scale_np), permute=False)
|
55 |
-
image_transformed_torch = normalise_image(
|
56 |
-
image_torch.clone())
|
57 |
-
|
58 |
-
output = model(
|
59 |
-
image_torch,
|
60 |
-
trimap_torch,
|
61 |
-
image_transformed_torch,
|
62 |
-
trimap_transformed_torch)
|
63 |
-
output = cv2.resize(
|
64 |
-
output[0].cpu().numpy().transpose(
|
65 |
-
(1, 2, 0)), (w, h), cv2.INTER_LANCZOS4)
|
66 |
-
|
67 |
-
alpha = output[:, :, 0]
|
68 |
-
fg = output[:, :, 1:4]
|
69 |
-
bg = output[:, :, 4:7]
|
70 |
-
|
71 |
-
alpha[trimap_np[:, :, 0] == 1] = 0
|
72 |
-
alpha[trimap_np[:, :, 1] == 1] = 1
|
73 |
-
fg[alpha == 1] = image_np[alpha == 1]
|
74 |
-
bg[alpha == 0] = image_np[alpha == 0]
|
75 |
-
|
76 |
-
return fg, bg, alpha
|
77 |
-
|
78 |
-
|
79 |
-
def read_image(name):
|
80 |
-
return (cv2.imread(name) / 255.0)[:, :, ::-1]
|
81 |
-
|
82 |
-
|
83 |
-
def read_trimap(name):
|
84 |
-
trimap_im = cv2.imread(name, 0) / 255.0
|
85 |
-
h, w = trimap_im.shape
|
86 |
-
trimap_np = np.zeros((h, w, 2))
|
87 |
-
trimap_np[trimap_im == 1, 1] = 1
|
88 |
-
trimap_np[trimap_im == 0, 0] = 1
|
89 |
-
return trimap_np
|
90 |
-
|
91 |
-
|
92 |
def predict(image, trimap):
|
93 |
-
|
94 |
-
trimap_np = read_trimap(trimap)
|
95 |
-
return inference(image_np, trimap_np)
|
96 |
|
97 |
|
98 |
footer = r"""
|
@@ -115,8 +36,10 @@ with gr.Blocks(title="FBA Matting") as app:
|
|
115 |
fg = gr.Image(type="numpy", label="Foreground")
|
116 |
bg = gr.Image(type="numpy", label="Background")
|
117 |
alpha = gr.Image(type="numpy", label="Alpha")
|
|
|
|
|
118 |
|
119 |
-
run_btn.click(predict, [input_img, input_trimap], [fg, bg, alpha])
|
120 |
|
121 |
with gr.Row():
|
122 |
blobs = [[
|
@@ -129,4 +52,3 @@ with gr.Blocks(title="FBA Matting") as app:
|
|
129 |
gr.HTML(footer)
|
130 |
|
131 |
app.launch(share=False, debug=True, enable_queue=True, show_error=True)
|
132 |
-
|
|
|
1 |
# demo source from: https://github.com/MarcoForte/FBA_Matting
|
|
|
|
|
2 |
import gradio as gr
|
3 |
+
from FBA_Matting import inference
|
|
|
4 |
from huggingface_hub import hf_hub_download
|
5 |
|
6 |
from networks.models import build_model
|
|
|
7 |
|
8 |
REPO_ID = "leonelhs/FBA-Matting"
|
9 |
|
|
|
12 |
model.eval().cpu()
|
13 |
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def predict(image, trimap):
|
16 |
+
return inference(model, image, trimap)
|
|
|
|
|
17 |
|
18 |
|
19 |
footer = r"""
|
|
|
36 |
fg = gr.Image(type="numpy", label="Foreground")
|
37 |
bg = gr.Image(type="numpy", label="Background")
|
38 |
alpha = gr.Image(type="numpy", label="Alpha")
|
39 |
+
composite = gr.Image(type="numpy", label="Composite")
|
40 |
+
gr.ClearButton(components=[input_img, input_trimap, fg, bg, alpha, composite], variant="stop")
|
41 |
|
42 |
+
run_btn.click(predict, [input_img, input_trimap], [fg, bg, alpha, composite])
|
43 |
|
44 |
with gr.Row():
|
45 |
blobs = [[
|
|
|
52 |
gr.HTML(footer)
|
53 |
|
54 |
app.launch(share=False, debug=True, enable_queue=True, show_error=True)
|
|
requirements.txt
CHANGED
@@ -1,3 +1,5 @@
|
|
1 |
torch>=1.4.0
|
2 |
numpy
|
3 |
opencv-python
|
|
|
|
|
|
1 |
torch>=1.4.0
|
2 |
numpy
|
3 |
opencv-python
|
4 |
+
FBA-Matting
|
5 |
+
|