FBA-Matting / networks /models.py
leonelhs's picture
Making pypi library and CLI tool
d253868
raw
history blame
7.07 kB
import torch
import torch.nn as nn
from FBA_Matting.networks import ResNet
import FBA_Matting.networks.layers_WS as L
def build_model(weights):
net_encoder = fba_encoder()
net_decoder = fba_decoder()
model = MattingModule(net_encoder, net_decoder)
if weights != 'default':
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
sd = torch.load(weights, map_location=device)
model.load_state_dict(sd, strict=True)
return model
class MattingModule(nn.Module):
def __init__(self, net_enc, net_dec):
super(MattingModule, self).__init__()
self.encoder = net_enc
self.decoder = net_dec
def forward(self, image, two_chan_trimap, image_n, trimap_transformed):
resnet_input = torch.cat((image_n, trimap_transformed, two_chan_trimap), 1)
conv_out, indices = self.encoder(resnet_input, return_feature_maps=True)
return self.decoder(conv_out, image, indices, two_chan_trimap)
def fba_encoder():
orig_resnet = ResNet()
net_encoder = ResnetDilated(orig_resnet, dilate_scale=8)
num_channels = 3 + 6 + 2
print(f'modifying input layer to accept {num_channels} channels')
net_encoder_sd = net_encoder.state_dict()
conv1_weights = net_encoder_sd['conv1.weight']
c_out, c_in, h, w = conv1_weights.size()
conv1_mod = torch.zeros(c_out, num_channels, h, w)
conv1_mod[:, :3, :, :] = conv1_weights
conv1 = net_encoder.conv1
conv1.in_channels = num_channels
conv1.weight = torch.nn.Parameter(conv1_mod)
net_encoder.conv1 = conv1
net_encoder_sd['conv1.weight'] = conv1_mod
net_encoder.load_state_dict(net_encoder_sd)
return net_encoder
class ResnetDilated(nn.Module):
def __init__(self, orig_resnet, dilate_scale=8):
super(ResnetDilated, self).__init__()
from functools import partial
if dilate_scale == 8:
orig_resnet.layer3.apply(
partial(self._nostride_dilate, dilate=2))
orig_resnet.layer4.apply(
partial(self._nostride_dilate, dilate=4))
elif dilate_scale == 16:
orig_resnet.layer4.apply(
partial(self._nostride_dilate, dilate=2))
# take pretrained resnet, except AvgPool and FC
self.conv1 = orig_resnet.conv1
self.bn1 = orig_resnet.bn1
self.relu = orig_resnet.relu
self.maxpool = orig_resnet.maxpool
self.layer1 = orig_resnet.layer1
self.layer2 = orig_resnet.layer2
self.layer3 = orig_resnet.layer3
self.layer4 = orig_resnet.layer4
def _nostride_dilate(self, m, dilate):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
# the convolution with stride
if m.stride == (2, 2):
m.stride = (1, 1)
if m.kernel_size == (3, 3):
m.dilation = (dilate // 2, dilate // 2)
m.padding = (dilate // 2, dilate // 2)
# other convoluions
else:
if m.kernel_size == (3, 3):
m.dilation = (dilate, dilate)
m.padding = (dilate, dilate)
def forward(self, x, return_feature_maps=False):
conv_out = [x]
x = self.relu(self.bn1(self.conv1(x)))
conv_out.append(x)
x, indices = self.maxpool(x)
x = self.layer1(x)
conv_out.append(x)
x = self.layer2(x)
conv_out.append(x)
x = self.layer3(x)
conv_out.append(x)
x = self.layer4(x)
conv_out.append(x)
if return_feature_maps:
return conv_out, indices
return [x]
def fba_fusion(alpha, img, F, B):
F = (alpha * img + (1 - alpha ** 2) * F - alpha * (1 - alpha) * B)
B = ((1 - alpha) * img + (2 * alpha - alpha ** 2) * B - alpha * (1 - alpha) * F)
F = torch.clamp(F, 0, 1)
B = torch.clamp(B, 0, 1)
la = 0.1
alpha = (alpha * la + torch.sum((img - B) * (F - B), 1, keepdim=True)) / (
torch.sum((F - B) * (F - B), 1, keepdim=True) + la)
alpha = torch.clamp(alpha, 0, 1)
return alpha, F, B
class fba_decoder(nn.Module):
def __init__(self):
super(fba_decoder, self).__init__()
pool_scales = (1, 2, 3, 6)
self.ppm = []
for scale in pool_scales:
self.ppm.append(nn.Sequential(
nn.AdaptiveAvgPool2d(scale),
L.Conv2d(2048, 256, kernel_size=1, bias=True),
L.norm(256),
nn.LeakyReLU()
))
self.ppm = nn.ModuleList(self.ppm)
self.conv_up1 = nn.Sequential(
L.Conv2d(2048 + len(pool_scales) * 256, 256,
kernel_size=3, padding=1, bias=True),
L.norm(256),
nn.LeakyReLU(),
L.Conv2d(256, 256, kernel_size=3, padding=1),
L.norm(256),
nn.LeakyReLU()
)
self.conv_up2 = nn.Sequential(
L.Conv2d(256 + 256, 256,
kernel_size=3, padding=1, bias=True),
L.norm(256),
nn.LeakyReLU()
)
self.conv_up3 = nn.Sequential(
L.Conv2d(256 + 64, 64,
kernel_size=3, padding=1, bias=True),
L.norm(64),
nn.LeakyReLU()
)
self.unpool = nn.MaxUnpool2d(2, stride=2)
self.conv_up4 = nn.Sequential(
nn.Conv2d(64 + 3 + 3 + 2, 32,
kernel_size=3, padding=1, bias=True),
nn.LeakyReLU(),
nn.Conv2d(32, 16,
kernel_size=3, padding=1, bias=True),
nn.LeakyReLU(),
nn.Conv2d(16, 7, kernel_size=1, padding=0, bias=True)
)
def forward(self, conv_out, img, indices, two_chan_trimap):
conv5 = conv_out[-1]
input_size = conv5.size()
ppm_out = [conv5]
for pool_scale in self.ppm:
ppm_out.append(nn.functional.interpolate(
pool_scale(conv5),
(input_size[2], input_size[3]),
mode='bilinear', align_corners=False))
ppm_out = torch.cat(ppm_out, 1)
x = self.conv_up1(ppm_out)
x = torch.nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
x = torch.cat((x, conv_out[-4]), 1)
x = self.conv_up2(x)
x = torch.nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
x = torch.cat((x, conv_out[-5]), 1)
x = self.conv_up3(x)
x = torch.nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)
x = torch.cat((x, conv_out[-6][:, :3], img, two_chan_trimap), 1)
output = self.conv_up4(x)
alpha = torch.clamp(output[:, 0][:, None], 0, 1)
F = torch.sigmoid(output[:, 1:4])
B = torch.sigmoid(output[:, 4:7])
# FBA Fusion
alpha, F, B = fba_fusion(alpha, img, F, B)
output = torch.cat((alpha, F, B), 1)
return output