Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
from FBA_Matting.networks import ResNet | |
import FBA_Matting.networks.layers_WS as L | |
def build_model(weights): | |
net_encoder = fba_encoder() | |
net_decoder = fba_decoder() | |
model = MattingModule(net_encoder, net_decoder) | |
if weights != 'default': | |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
sd = torch.load(weights, map_location=device) | |
model.load_state_dict(sd, strict=True) | |
return model | |
class MattingModule(nn.Module): | |
def __init__(self, net_enc, net_dec): | |
super(MattingModule, self).__init__() | |
self.encoder = net_enc | |
self.decoder = net_dec | |
def forward(self, image, two_chan_trimap, image_n, trimap_transformed): | |
resnet_input = torch.cat((image_n, trimap_transformed, two_chan_trimap), 1) | |
conv_out, indices = self.encoder(resnet_input, return_feature_maps=True) | |
return self.decoder(conv_out, image, indices, two_chan_trimap) | |
def fba_encoder(): | |
orig_resnet = ResNet() | |
net_encoder = ResnetDilated(orig_resnet, dilate_scale=8) | |
num_channels = 3 + 6 + 2 | |
print(f'modifying input layer to accept {num_channels} channels') | |
net_encoder_sd = net_encoder.state_dict() | |
conv1_weights = net_encoder_sd['conv1.weight'] | |
c_out, c_in, h, w = conv1_weights.size() | |
conv1_mod = torch.zeros(c_out, num_channels, h, w) | |
conv1_mod[:, :3, :, :] = conv1_weights | |
conv1 = net_encoder.conv1 | |
conv1.in_channels = num_channels | |
conv1.weight = torch.nn.Parameter(conv1_mod) | |
net_encoder.conv1 = conv1 | |
net_encoder_sd['conv1.weight'] = conv1_mod | |
net_encoder.load_state_dict(net_encoder_sd) | |
return net_encoder | |
class ResnetDilated(nn.Module): | |
def __init__(self, orig_resnet, dilate_scale=8): | |
super(ResnetDilated, self).__init__() | |
from functools import partial | |
if dilate_scale == 8: | |
orig_resnet.layer3.apply( | |
partial(self._nostride_dilate, dilate=2)) | |
orig_resnet.layer4.apply( | |
partial(self._nostride_dilate, dilate=4)) | |
elif dilate_scale == 16: | |
orig_resnet.layer4.apply( | |
partial(self._nostride_dilate, dilate=2)) | |
# take pretrained resnet, except AvgPool and FC | |
self.conv1 = orig_resnet.conv1 | |
self.bn1 = orig_resnet.bn1 | |
self.relu = orig_resnet.relu | |
self.maxpool = orig_resnet.maxpool | |
self.layer1 = orig_resnet.layer1 | |
self.layer2 = orig_resnet.layer2 | |
self.layer3 = orig_resnet.layer3 | |
self.layer4 = orig_resnet.layer4 | |
def _nostride_dilate(self, m, dilate): | |
classname = m.__class__.__name__ | |
if classname.find('Conv') != -1: | |
# the convolution with stride | |
if m.stride == (2, 2): | |
m.stride = (1, 1) | |
if m.kernel_size == (3, 3): | |
m.dilation = (dilate // 2, dilate // 2) | |
m.padding = (dilate // 2, dilate // 2) | |
# other convoluions | |
else: | |
if m.kernel_size == (3, 3): | |
m.dilation = (dilate, dilate) | |
m.padding = (dilate, dilate) | |
def forward(self, x, return_feature_maps=False): | |
conv_out = [x] | |
x = self.relu(self.bn1(self.conv1(x))) | |
conv_out.append(x) | |
x, indices = self.maxpool(x) | |
x = self.layer1(x) | |
conv_out.append(x) | |
x = self.layer2(x) | |
conv_out.append(x) | |
x = self.layer3(x) | |
conv_out.append(x) | |
x = self.layer4(x) | |
conv_out.append(x) | |
if return_feature_maps: | |
return conv_out, indices | |
return [x] | |
def fba_fusion(alpha, img, F, B): | |
F = (alpha * img + (1 - alpha ** 2) * F - alpha * (1 - alpha) * B) | |
B = ((1 - alpha) * img + (2 * alpha - alpha ** 2) * B - alpha * (1 - alpha) * F) | |
F = torch.clamp(F, 0, 1) | |
B = torch.clamp(B, 0, 1) | |
la = 0.1 | |
alpha = (alpha * la + torch.sum((img - B) * (F - B), 1, keepdim=True)) / ( | |
torch.sum((F - B) * (F - B), 1, keepdim=True) + la) | |
alpha = torch.clamp(alpha, 0, 1) | |
return alpha, F, B | |
class fba_decoder(nn.Module): | |
def __init__(self): | |
super(fba_decoder, self).__init__() | |
pool_scales = (1, 2, 3, 6) | |
self.ppm = [] | |
for scale in pool_scales: | |
self.ppm.append(nn.Sequential( | |
nn.AdaptiveAvgPool2d(scale), | |
L.Conv2d(2048, 256, kernel_size=1, bias=True), | |
L.norm(256), | |
nn.LeakyReLU() | |
)) | |
self.ppm = nn.ModuleList(self.ppm) | |
self.conv_up1 = nn.Sequential( | |
L.Conv2d(2048 + len(pool_scales) * 256, 256, | |
kernel_size=3, padding=1, bias=True), | |
L.norm(256), | |
nn.LeakyReLU(), | |
L.Conv2d(256, 256, kernel_size=3, padding=1), | |
L.norm(256), | |
nn.LeakyReLU() | |
) | |
self.conv_up2 = nn.Sequential( | |
L.Conv2d(256 + 256, 256, | |
kernel_size=3, padding=1, bias=True), | |
L.norm(256), | |
nn.LeakyReLU() | |
) | |
self.conv_up3 = nn.Sequential( | |
L.Conv2d(256 + 64, 64, | |
kernel_size=3, padding=1, bias=True), | |
L.norm(64), | |
nn.LeakyReLU() | |
) | |
self.unpool = nn.MaxUnpool2d(2, stride=2) | |
self.conv_up4 = nn.Sequential( | |
nn.Conv2d(64 + 3 + 3 + 2, 32, | |
kernel_size=3, padding=1, bias=True), | |
nn.LeakyReLU(), | |
nn.Conv2d(32, 16, | |
kernel_size=3, padding=1, bias=True), | |
nn.LeakyReLU(), | |
nn.Conv2d(16, 7, kernel_size=1, padding=0, bias=True) | |
) | |
def forward(self, conv_out, img, indices, two_chan_trimap): | |
conv5 = conv_out[-1] | |
input_size = conv5.size() | |
ppm_out = [conv5] | |
for pool_scale in self.ppm: | |
ppm_out.append(nn.functional.interpolate( | |
pool_scale(conv5), | |
(input_size[2], input_size[3]), | |
mode='bilinear', align_corners=False)) | |
ppm_out = torch.cat(ppm_out, 1) | |
x = self.conv_up1(ppm_out) | |
x = torch.nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False) | |
x = torch.cat((x, conv_out[-4]), 1) | |
x = self.conv_up2(x) | |
x = torch.nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False) | |
x = torch.cat((x, conv_out[-5]), 1) | |
x = self.conv_up3(x) | |
x = torch.nn.functional.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False) | |
x = torch.cat((x, conv_out[-6][:, :3], img, two_chan_trimap), 1) | |
output = self.conv_up4(x) | |
alpha = torch.clamp(output[:, 0][:, None], 0, 1) | |
F = torch.sigmoid(output[:, 1:4]) | |
B = torch.sigmoid(output[:, 4:7]) | |
# FBA Fusion | |
alpha, F, B = fba_fusion(alpha, img, F, B) | |
output = torch.cat((alpha, F, B), 1) | |
return output | |