Spaces:
Runtime error
Runtime error
import gradio as gr | |
from huggingface_hub import InferenceClient | |
""" | |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
""" | |
client = InferenceClient("shisa-ai/shisa-llama3-8b-v1") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
messages = [{"role": "system", "content": system_message}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
response = "" | |
for message in client.chat_completion( | |
messages, | |
max_tokens=max_tokens, | |
stream=True, | |
temperature=temperature, | |
top_p=top_p, | |
): | |
token = message.choices[0].delta.content | |
response += token | |
yield response | |
""" | |
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
""" | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() | |
''' | |
# https://www.gradio.app/guides/using-hugging-face-integrations | |
import gradio as gr | |
import logging | |
import html | |
from pprint import pprint | |
import time | |
import torch | |
from threading import Thread | |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer | |
# Model | |
model_name = "augmxnt/shisa-7b-v1" | |
# UI Settings | |
title = "Shisa 7B" | |
description = "Test out <a href='https://huggingface.co/augmxnt/shisa-7b-v1'>Shisa 7B</a> in either English or Japanese. If you aren't getting the right language outputs, you can try changing the system prompt to the appropriate language.\n\nNote: we are running this model quantized at `load_in_4bit` to fit in 16GB of VRAM." | |
placeholder = "Type Here / ここに入力してください" | |
examples = [ | |
["What are the best slices of pizza in New York City?"], | |
["東京でおすすめのラーメン屋ってどこ?"], | |
['How do I program a simple "hello world" in Python?'], | |
["Pythonでシンプルな「ハローワールド」をプログラムするにはどうすればいいですか?"], | |
] | |
# LLM Settings | |
# Initial | |
system_prompt = 'You are a helpful, bilingual assistant. Reply in same language as the user.' | |
default_prompt = system_prompt | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype=torch.bfloat16, | |
device_map="auto", | |
# load_in_8bit=True, | |
load_in_4bit=True, | |
use_flash_attention_2=True, | |
) | |
def chat(message, history, system_prompt): | |
if not system_prompt: | |
system_prompt = default_prompt | |
print('---') | |
print('Prompt:', system_prompt) | |
pprint(history) | |
print(message) | |
# Let's just rebuild every time it's easier | |
chat_history = [{"role": "system", "content": system_prompt}] | |
for h in history: | |
chat_history.append({"role": "user", "content": h[0]}) | |
chat_history.append({"role": "assistant", "content": h[1]}) | |
chat_history.append({"role": "user", "content": message}) | |
input_ids = tokenizer.apply_chat_template(chat_history, add_generation_prompt=True, return_tensors="pt") | |
# for multi-gpu, find the device of the first parameter of the model | |
first_param_device = next(model.parameters()).device | |
input_ids = input_ids.to(first_param_device) | |
generate_kwargs = dict( | |
inputs=input_ids, | |
max_new_tokens=200, | |
do_sample=True, | |
temperature=0.7, | |
repetition_penalty=1.15, | |
top_p=0.95, | |
eos_token_id=tokenizer.eos_token_id, | |
pad_token_id=tokenizer.eos_token_id, | |
) | |
output_ids = model.generate(**generate_kwargs) | |
new_tokens = output_ids[0, input_ids.size(1):] | |
response = tokenizer.decode(new_tokens, skip_special_tokens=True) | |
return response | |
chat_interface = gr.ChatInterface( | |
chat, | |
chatbot=gr.Chatbot(height=400), | |
textbox=gr.Textbox(placeholder=placeholder, container=False, scale=7), | |
title=title, | |
description=description, | |
theme="soft", | |
examples=examples, | |
cache_examples=False, | |
undo_btn="Delete Previous", | |
clear_btn="Clear", | |
additional_inputs=[ | |
gr.Textbox(system_prompt, label="System Prompt (Change the language of the prompt for better replies)"), | |
], | |
) | |
# https://huggingface.co/spaces/ysharma/Explore_llamav2_with_TGI/blob/main/app.py#L219 - we use this with construction b/c Gradio barfs on autoreload otherwise | |
with gr.Blocks() as demo: | |
chat_interface.render() | |
gr.Markdown("You can try asking this question in Japanese or English. We limit output to 200 tokens.") | |
demo.queue().launch() | |
''' |