Spaces:
Running
Running
import os | |
import torch | |
import base64 | |
from io import BytesIO | |
from PIL import Image | |
import gradio as gr | |
from ebooklib import epub | |
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration | |
from olmocr.data.renderpdf import render_pdf_to_base64png | |
from olmocr.prompts import build_finetuning_prompt | |
from olmocr.prompts.anchor import get_anchor_text | |
from PyPDF2 import PdfReader | |
# Set a writable cache directory for HF | |
os.environ['HF_HOME'] = '/tmp/.cache/huggingface' | |
# Load processor and model | |
processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-7B-Instruct") | |
model = Qwen2VLForConditionalGeneration.from_pretrained( | |
"allenai/olmOCR-7B-0225-preview", torch_dtype=torch.bfloat16 | |
).eval() | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
def extract_text_from_page(pdf_path, page_num): | |
# Render image | |
image_base64 = render_pdf_to_base64png(pdf_path, page_num, target_longest_image_dim=1024) | |
image = Image.open(BytesIO(base64.b64decode(image_base64))) | |
# Prompt and input | |
anchor_text = get_anchor_text(pdf_path, page_num, pdf_engine="pdfreport", target_length=4000) | |
prompt = build_finetuning_prompt(anchor_text) | |
messages = [ | |
{ | |
"role": "user", | |
"content": [ | |
{"type": "text", "text": prompt}, | |
{"type": "image_url", "image_url": {"url": f"data:image/png;base64,{image_base64}"}}, | |
], | |
} | |
] | |
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
inputs = processor(text=[text], images=[image], return_tensors="pt", padding=True) | |
inputs = {k: v.to(device) for k, v in inputs.items()} | |
with torch.no_grad(): | |
output = model.generate( | |
**inputs, | |
temperature=0.8, | |
max_new_tokens=256, | |
num_return_sequences=1, | |
do_sample=True, | |
) | |
prompt_len = inputs["input_ids"].shape[1] | |
new_tokens = output[:, prompt_len:] | |
decoded = processor.tokenizer.batch_decode(new_tokens, skip_special_tokens=True)[0] | |
return decoded, image_base64 if page_num == 1 else None | |
def process_pdf(file, title="Extracted PDF", author="olmOCR", language="en"): | |
file_path = file.name | |
reader = PdfReader(file_path) | |
num_pages = len(reader.pages) | |
all_text = [] | |
cover_image_data = None | |
for page in range(1, num_pages + 1): | |
text, cover_image = extract_text_from_page(file_path, page) | |
all_text.append(f"<h2>Page {page}</h2><p>{text}</p>") | |
if cover_image and not cover_image_data: | |
cover_image_data = cover_image # base64 | |
# Build EPUB | |
book = epub.EpubBook() | |
book.set_identifier("id123456") | |
book.set_title(title) | |
book.set_language(language) | |
book.add_author(author) | |
# Add cover image | |
if cover_image_data: | |
cover_bytes = base64.b64decode(cover_image_data) | |
book.set_cover("cover.jpg", cover_bytes) | |
# Create chapter with all text | |
chapter = epub.EpubHtml(title=title, file_name="chap1.xhtml", lang=language) | |
chapter.content = f"<h1>{title}</h1>{''.join(all_text)}" | |
book.add_item(chapter) | |
book.toc = (epub.Link('chap1.xhtml', title, 'chap1'),) | |
book.add_item(epub.EpubNavi()) | |
book.add_item(epub.EpubNCX()) | |
book.spine = ['nav', chapter] | |
epub_path = f"/tmp/{title.replace(' ', '_')}.epub" | |
epub.write_epub(epub_path, book) | |
return epub_path | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=process_pdf, | |
inputs=[ | |
gr.File(label="Upload PDF"), | |
gr.Textbox(value="Extracted PDF", label="EPUB Title"), | |
gr.Textbox(value="olmOCR", label="Author"), | |
gr.Textbox(value="en", label="Language"), | |
], | |
outputs=gr.File(label="Download EPUB"), | |
title="olmOCR PDF to EPUB (Full PDF + Cover Image)", | |
description="Extract text from ALL pages of a PDF and generate an EPUB with the first page as cover.", | |
allow_flagging="never" | |
) | |
if __name__ == "__main__": | |
iface.launch() | |