Spaces:
Runtime error
Runtime error
import gradio as gr | |
import numpy as np | |
import torch | |
from datasets import load_dataset | |
import librosa | |
from transformers import pipeline | |
from transformers import BarkModel, BarkProcessor | |
from transformers import Speech2TextProcessor, Speech2TextForConditionalGeneration | |
device = "cuda:0" if torch.cuda.is_available() else "cpu" | |
asr_model = Speech2TextForConditionalGeneration.from_pretrained("facebook/s2t-medium-mustc-multilingual-st") | |
asr_processor = Speech2TextProcessor.from_pretrained("facebook/s2t-medium-mustc-multilingual-st") | |
asr_model.to(device) | |
bark_model = BarkModel.from_pretrained("suno/bark-small") | |
bark_processor = BarkProcessor.from_pretrained("suno/bark-small") | |
bark_model.to(device) | |
def translate(audio): | |
sr, y = audio | |
y = y.astype(np.float32) | |
y /= np.max(np.abs(y)) | |
if sr != 16000: | |
y = librosa.resample(y, orig_sr=sr, target_sr=16000) | |
inputs = asr_processor(y, sampling_rate=16000, return_tensors="pt") | |
generated_ids = asr_model.generate(inputs["input_features"],attention_mask=inputs["attention_mask"], | |
forced_bos_token_id=asr_processor.tokenizer.lang_code_to_id['it'],) | |
translation = asr_processor.batch_decode(generated_ids, skip_special_tokens=True) | |
# _, parsedTranslation = translation[0].split(")", 1) | |
# translation[0] = parsedTranslation | |
return translation | |
def synthesise(text): | |
inputs = bark_processor(text=text, voice_preset="v2/it_speaker_4",return_tensors="pt") | |
speech = bark_model.generate(**inputs, do_sample=True) | |
speech = speech.cpu().numpy().squeeze() | |
return speech | |
def speech_to_speech_translation(audio): | |
translated_text = translate(audio) | |
synthesised_speech = synthesise(translated_text) | |
synthesised_speech = (synthesised_speech * 32767).astype(np.int16) | |
return 16000, synthesised_speech | |
title = "Cascaded STST" | |
description = """i | |
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in Italian. Demo uses Meta's [Speech2Text](https://huggingface.co/facebook/s2t-medium-mustc-multilingual-st) model for speech translation, and Suno's | |
[Bark](https://huggingface.co/suno/bark) model for text-to-speech: | |
""" | |
demo = gr.Blocks() | |
mic_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(sources="microphone"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
title=title, | |
description=description, | |
) | |
file_translate = gr.Interface( | |
fn=speech_to_speech_translation, | |
inputs=gr.Audio(sources="upload"), | |
outputs=gr.Audio(label="Generated Speech", type="numpy"), | |
examples=[["./example_en.mp3"]], | |
title=title, | |
description=description, | |
) | |
with demo: | |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) | |
demo.launch() |